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1 IntrodutionMultithreaded programming is beoming a mainstream pro-gramming pratie. But multithreaded programming is dif-�ult and error prone. Multithreaded programs synhronizeoperations on shared mutable data to ensure that the op-erations exeute atomially. Failure to orretly synhro-nize suh operations an lead to data raes or deadloks. Adata rae ours when two threads onurrently aess thesame data without synhronization, and at least one of theaesses is a write. A deadlok ours when there is a y-le of the form: 8i 2 f0::n� 1g, Threadi holds Loki andThreadi is waiting for Lok(i+1)mod n. Synhronization er-rors in multithreaded programs are among the most diÆultprogramming errors to detet, reprodue, and eliminate.This paper presents a new stati type system for multi-threaded programs; well-typed programs in our system areguaranteed to be free of data raes and deadloks. We re-ently presented a stati type system to prevent data raes [7℄.This paper extends the rae-free type system to prevent bothdata raes and deadloks. The basi idea is as follows. Whenprogrammers write multithreaded programs, they alreadyhave a loking disipline in mind. Our system allows pro-grammers to speify this loking disipline in their programsin the form of type delarations. Our system statially ver-i�es that a program is onsistent with its type delarations.1.1 Deadlok FreedomTo prevent deadloks, programmers partition all the loksinto a �xed number of lok levels and speify a partial orderamong the lok levels. The type heker statially veri�esthat whenever a thread holds more than one lok, the threadaquires the loks in the desending order. Our type systemallows programmers to write ode that is polymorphi inlok levels. Programmers an speify a partial order amongformal lok level parameters using where lauses [17, 41℄.Our system also allows programmers to use reursive tree-based data strutures to further order the loks within agiven lok level. For example, programmers an speify thatnodes in a tree must be loked in the tree order. Our sys-tem allows mutations to the data struture that hange thepartial order at runtime. The type heker uses an intra-proedural intra-loop ow-sensitive analysis to statially ver-ify that the mutations do not introdue yles in the partialorder, and that the hanging of the partial order does notlead to deadloks. We do not know of any other sound statisystem for preventing deadloks that allows hanges to thepartial order at runtime.211
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1.2 Data Rae FreedomTo prevent data raes, programmers assoiate every objetwith a protetion mehanism that ensures that aesses tothe objet never reate data raes. The protetion meha-nism of an objet an speify either the mutual exlusion lokthat protets the objet from unsynhronized onurrent a-esses, or that threads an safely aess the objet withoutsynhronization beause either 1) the objet is immutable,2) the objet is aessible to a single thread, or 3) there isa unique pointer to the objet. Unique pointers are use-ful to support objet migration between threads. The typeheker statially veri�es that a program uses objets onlyin aordane with their delared protetion mehanisms.Our type system is signi�antly more expressive than previ-ously proposed type systems for preventing data raes [22,4℄. In partiular, our type system lets programmers writegeneri ode to implement a lass, then reate di�erent ob-jets of the lass that have di�erent protetion mehanisms.We do this by introduing a way of parameterizing lassesthat lets programmers defer the protetion mehanism dei-sion from the time when a lass is de�ned to the times whenobjets of that lass are reated.1.3 Ownership TypesWe use a variant of ownership types [14, 13℄ to prevent dataraes and deadloks. Ownership types provide a statiallyenforeable way of speifying objet enapsulation. Owner-ship types are useful for preventing data raes and deadloksbeause the lok that protets an objet an also protet itsenapsulated objets. In reent previous work we presentedPRFJ [7℄, a type system that uses a variant of ownershiptypes to statially prevent data raes. PRFJ is the �rsttype system to ombine ownership types with unique point-ers [38℄. This enables PRFJ to express onstruts that nei-ther ownership types nor unique pointers alone an express.PRFJ is also the �rst type system to ombine ownershiptypes with e�ets lauses [37℄. This paper extends PRFJ toprevent both data raes and deadloks.We have reently developed an ownership type system [6℄that statially enfores objet enapsulation, while support-ing subtyping and onstruts like iterators. Other owner-ship type systems either do not enfore objet enapsulation(they enfore weaker restritions instead) [12, 7, 2℄, or theyare not expressive (they do not support subtyping and on-struts like iterators) [14, 13℄. We present a detailed dis-ussion of ownership types in Setion 7. We also desribehow the type system in this paper an be ombined with thetype system in [6℄ to statially enfore objet enapsulationas well as prevent data raes and deadloks.1.4 ContributionsThis paper makes the following ontributions:� Stati Type System to Prevent Deadloks: Thispaper presents a new stati type system to preventdeadloks in Java programs. Our system allows pro-grammers to partition all the loks into a �xed numberof lok levels and speify a partial order among thelok levels. The type heker then statially veri�es

that whenever a thread holds more than one lok, thethread aquires the loks in the desending order.� Formal Rules for Type Cheking: To simplify thepresentation of key ideas behind our approah, thispaper formally presents our type system in the ontextof a ore subset of Java alled Conurrent Java [7, 22,23℄. Our implementation, however, works for the wholeof the Java language.� Type Inferene Algorithm: Although our type sys-tem is expliitly typed in priniple, it would be onerousto fully annotate every method with the extra type in-formation that our system requires. Instead, we usea ombination of intra-proedural type inferene andwell-hosen defaults to signi�antly redue the num-ber of annotations needed in pratie. Our approahpermits separate ompilation.� Lok Level Polymorphism: Our type system al-lows programmers write ode that is polymorphi inlok levels. Our system also allows programmers tospeify a partial order among formal lok level param-eters using where lauses [17, 41℄. This feature enablesprogrammers to write ode in whih the exat levels ofsome loks are not known statially, but only some or-dering onstraints among the unknown lok levels areknown statially.� Support for Condition Variables: In addition tomutual exlusion loks, our type system prevents dead-loks in the presene of ondition variables. Our sys-tem statially enfores the onstraint that a thread aninvoke e.wait only if the thread holds no loks otherthan the lok on e. Sine a thread releases the lokon e on exeuting e.wait, the above onstraint impliesthat any thread that is waiting on a ondition variableholds no loks. This in turn implies that there annotbe a deadlok that involves a ondition variable. Oursystem thus prevents the nested monitor problem [36℄.� Partial-Orders Based on Mutable Trees: Oursystem allows programmers to use reursive tree-baseddata strutures to further order the loks within a givenlok level. Our system allows mutations that hangethe partial order at runtime. The type heker usesan intra-proedural intra-loop ow-sensitive analysisto statially verify that the mutations do not intro-due yles in the partial order, and that the hangingof the partial order does not lead to deadloks.� Partial-Orders Based on Monotoni DAGs: Oursystem also allows programmers to use reursive DAG-based data strutures to order the loks within a givenlok level. DAG edges annot be modi�ed one ini-tialized. Only newly reated nodes may be added to aDAG by initializing the newly reated nodes to ontainDAG edges to existing DAG nodes.� Runtime Ordering of Loks: Our system supportsimposing an arbitrary linear order at runtime on lokswithin a given lok level. Our system also provides aprimitive to aquire suh loks in the linear order.212
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1 lass Aount {2 int balane = 0;34 int balane() aesses (this) { return balane; }5 void deposit(int x) aesses (this) { balane += x; }6 void withdraw(int x) aesses (this) { balane -= x; }7 }89 lass CombinedAount<readonly> {10 LokLevel savingsLevel = new;11 LokLevel hekingLevel < savingsLevel;12 final Aount<self:savingsLevel> savingsAount13 = new Aount;14 final Aount<self:hekingLevel> hekingAount15 = new Aount;1617 void transfer(int x) loks(savingsLevel) {18 synhronized (savingsAount) {19 synhronized (hekingAount) {20 savingsAount.withdraw(x);21 hekingAount.deposit(x);22 }}}23 int reditChek() loks(savingsLevel) {24 synhronized (savingsAount) {25 synhronized (hekingAount) {26 return savingsAount.balane() +27 hekingAount.balane();28 }}}29 ...30 } Figure 1: Combined Aount Example� Experiene: We have a prototype implementation ofour system in the ontext of Java. Our implementationhandles all the features of Java inluding threads, on-strutors, arrays, exeptions, stati �elds, interfaes,runtime downasts, and dynami lass loading. Togain preliminary experiene, we modi�ed several Javalibraries and multithreaded server programs and imple-mented them in our system. These programs exhibita variety of sharing patterns. We found that our sys-tem is suÆiently expressive to support these sharingpatterns and requires little programming overhead.1.5 OutlineThe rest of this paper is organized as follows. Setion 2introdues our type system using two examples. Setion 3presents our basi type system for preventing data raes anddeadloks. Setion 4 desribes inferene tehniques that sig-ni�antly redue programming overhead. Setion 5 presentsextensions to our basi type system to support lok levelpolymorphism, ondition variables, tree-based partial orders,DAG-based partial orders, and runtime ordering of loks.Setion 6 desribes our experiene in using our type system.Setion 7 ontains a disussion of ownership types. Setion 8presents other related work and Setion 9 onludes.2 ExamplesThis setion introdues our type system with two examples.The later setions explain our type system in greater detail.2.1 Combined Aount ExampleFigure 1 presents an example program implemented in ourtype system. The program has an Aount lass and a Com-binedAount lass.

1 lass BalanedTree {2 LokLevel l = new;3 Node<self:l> root = new Node;4 }56 lass Node<self:k> {7 tree Node<self:k> left;8 tree Node<self:k> right;910 // this this11 // / \ / \12 // ... x ... v13 // / \ --> / \14 // v y u x15 // / \ / \16 // u w w y1718 synhronized void rotateRight() loks(this) {19 final Node x = this.right; if (x == null) return;20 synhronized (x) {21 final Node v = x.left; if (v == null) return;22 synhronized (v) {23 final Node w = v.right;24 v.right = null;25 x.left = w;26 this.right = v;27 v.right = x;28 }}}29 ...30 } Figure 2: Tree ExampleTo prevent data raes, programmers assoiate every objetin our system with a protetion mehanism. In the example,the CombinedAount lass is delared to be immutable. ACombinedAount may not be modi�ed after initialization.The Aount lass is generi|di�erent Aount objets mayhave di�erent protetion mehanisms. The CombinedA-ount lass ontains two Aount �elds|savingsAount andhekingAount. The key word self indiates that these twoAount objets are proteted by their own loks. The typeheker statially ensures that a thread holds the loks onthese Aount objets before aessing the Aount objets.To prevent deadloks, programmers assoiate every lok inour system with a lok level. In the example, the Com-binedAount lass delares two lok levels|savingsLevel andhekingLevel. Lok levels are purely ompile-time entities|they are not preserved at runtime. In the example, hek-ingLevel is delared to rank lower than savingsLevel in thepartial order of lok levels. The hekingAount belongsto hekingLevel, while the savingsAount belongs to sav-ingsLevel. The type heker statially ensures that threadsaquire these loks in the desending order of lok levels.Methods in our system may ontain aesses lauses to spe-ify assumptions that hold at method boundaries. The meth-ods of the Aount lass eah have an aesses lause thatspei�es that the methods aess the this Aount objetwithout synhronization. To prevent data raes, the allersof an Aount method must hold the lok that protets theorresponding Aount objet before the allers an invokethe Aount method. Without the aesses lauses, the A-ount methods would not have been well-typed.Methods in our system may also ontain loks lauses. The213
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P ::= defn* edefn ::= lass n extends  body ::= n j Objetbody ::= f�eld* meth*gmeth ::= t mn(arg* ) feg�eld ::= [�nal℄opt t fd = earg ::= [�nal℄opt t xt ::=  j int j booleane ::= new  j x j x = e j e.fd j e.fd = e j e.mn(e* ) je;e j let (arg = e) in feg j if (e) then feg jsynhronized (e) in feg j fork (x* ) fegn 2 lass namesfd 2 �eld namesmn 2 method namesx 2 variable namesFigure 3: Grammar for Conurrent Javamethods of the CombinedAount lass ontain a loks lauseto indiate to allers that they may aquire loks that belongto lok levels savingsLevel or lower. To prevent deadloks, thetype heker statially ensures that allers of CombinedA-ount methods only hold loks that are of greater lok levelsthan savingsLevel. Like the aesses lauses, the loks lausesare useful to enable separate ompilation.2.2 Tree ExampleFigure 2 presents part of a BalanedTree implemented in ourtype system. A BalanedTree is a tree of Nodes. Every Nodeobjet is delared to be proteted by its own lok. To preventdata raes, the type heker statially ensures that a threadholds the lok on a Node objet before aessing the Nodeobjet. The Node lass is parameterized by the formal loklevel k. The Node lass has two Node �elds left and right.The Nodes left and right also belong to the same lok level k.Our system allows programmers to use reursive tree-baseddata strutures to further order the loks that belong to thesame lok level. In the example, the key word tree indiatesthat the Nodes left and right are ordered lower than the thisNode objet in the partial order. To prevent deadloks, thetype heker statially veri�es that the rotateRight methodaquires the loks on Nodes this, x, and v in the tree order.The rotateRight method in the example performs a standardrotation operation on the tree to restore the tree balane.The type heker uses an intra-proedural intra-loop ow-sensitive analysis to statially verify that the mutations donot introdue yles in the partial order, and that the hang-ing of the partial order does not lead to deadloks.Our type system statially veri�es the absene of both dataraes and deadloks in the above examples.3 Basi Type SystemThis setion desribes our basi type system. To simplify thepresentation of key ideas behind our approah, we desribeour type system formally in the ontext of a ore subset ofJava [24℄ known as Conurrent Java [7, 22℄. Our implemen-tation, however, works for the whole of the Java language.Conurrent Java is an extension to a sequential subset ofJava known as Classi Java [23℄, and has muh of the sametype struture and semantis as Classi Java. Figure 3 showsthe grammar for Conurrent Java.
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o10Figure 4: An Ownership RelationO1. The owner of an objet does not hange over time.O2. The ownership relation forms a forest of rootedtrees, where the roots an have self loops.O3. The neessary and suÆient ondition for a threadto aess to an objet is that the thread must holdthe lok on the root of the ownership tree that theobjet belongs to.O4. Every thread impliitly holds the lok on the or-responding thisThread owner. A thread an there-fore aess any objet owned by its orrespondingthisThread owner without any synhronization.Figure 5: Ownership PropertiesEah objet in Conurrent Java has an assoiated lok thathas two states|loked and unloked|and is initially un-loked. The expression fork(x* ) feg spawns a new threadwith arguments (x* ) to evaluate e. The evaluation is per-formed only for its e�et; the result of e is never used. Notethat the Java mehanism of starting threads using ode ofthe form fThread t=...; t.start();g an be expressed equiva-lently in Conurrent Java as ffork(t) ft.start();gg. The ex-pression synhronized (e1) in fe2g works as in Java. e1 shouldevaluate to an objet. The evaluating thread holds the lokon objet e1 while evaluating e2. The value of the synhro-nized expression is the result of e2. While one thread holdsa lok, any other thread that attempts to aquire the samelok bloks until the lok is released. A newly forked threaddoes not inherit loks held by its parent thread.A Conurrent Java program is a sequene of lass de�nitionsfollowed by an initial expression. A prede�ned lass Objetis the root of the lass hierarhy. Eah variable and �elddelaration in Conurrent Java inludes an initialization ex-pression and an optional �nal modi�er. If the modi�er ispresent, then the variable or �eld annot be updated afterinitialization. Other Conurrent Java onstruts are similarto the orresponding onstruts in Java.3.1 Type System to Prevent Data RaesThis setion presents our type system for preventing dataraes in the ontext of Conurrent Java. Programmers asso-iate every objet with a protetion mehanism that ensuresthat aesses to the objet never reate data raes. Pro-grammers speify the protetion mehanism for eah objetas part of the type of the variables that point to that ob-jet. The type an speify either the mutual exlusion lokthat protets the objet from unsynhronized onurrent a-214
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defn ::= lass nhowner formal*i extends  body ::= nhowner+i j Objethowneriowner ::= formal j self j thisThread j efinalmeth ::= t mn(arg* ) aesses (efinal* ) fegefinal ::= eformal ::= ff 2 owner namesFigure 6: Grammar Extensions for Rae-Free Javaesses, or that threads an safely aess the objet withoutsynhronization beause either 1) the objet is immutable,2) the objet is aessible to a single thread, or 3) the vari-able ontains the unique pointer to the objet. Unique point-ers are useful to support objet migration between threads.The type heker then uses these type spei�ations to stat-ially verify that a program uses objets only in aordanewith their delared protetion mehanisms.This setion only desribes our basi type system that han-dles objets proteted by mutual exlusion loks and thread-loal objets that an be aessed without synhronization.Our rae-free type system also supports unsynhronized a-esses to immutable objets and objets with unique pointersthat an migrate between threads. Our rae-free type sys-tem is desribed in greater detail in [7℄. The key to our basirae-free type system is the onept of objet ownership. Ev-ery objet in our system has an owner. An objet an beowned by another objet, by itself, or by a speial per-threadowner alled thisThread. Objets owned by thisThread, ei-ther diretly or transitively, are loal to the orrespondingthread and annot be aessed by any other thread. Fig-ure 4 presents an example ownership relation. We draw anarrow from objet x to objet y in the �gure if objet x ownsobjet y. Our type system statially veri�es that a programrespets the ownership properties shown in Figure 5.1Figure 6 shows how to obtain the grammar for Rae-FreeJava by extending the grammar for Conurrent Java. Fig-ure 7 shows a TStak program in Rae-Free Java. For sim-pliity, all the examples in this paper use an extended lan-guage that is syntatially loser to Java. A TStak is a stakof T objets. A TStak is implemented using a linked list. Alass de�nition in Rae-Free Java is parameterized by a listof owners. This parameterization helps programmers writegeneri ode to implement a lass, then reate di�erent ob-jets of the lass that have di�erent protetion mehanisms.In Figure 7, the TStak lass is parameterized by thisOwnerand TOwner. thisOwner owns the this TStak objet andTOwner owns the T objets ontained in the TStak. In gen-eral, the �rst formal parameter of a lass always owns the thisobjet. In ase of s1, the owner thisThread is used for boththe parameters to instantiate the TStak lass. This meansthat the main thread owns TStak s1 as well as all the T ob-jets ontained in the TStak. In ase of s2, the main threadowns the TStak but the T objets ontained in the TStakown themselves. The ownership relation for the TStak ob-jets s1 and s2 is depited in Figure 8 (assuming the staksontains three elements eah). This example illustrates how1In our omplete rae-free type system [7℄, the owner of anobjet an hange if there is a unique pointer to the objet.

1 // thisOwner owns the TStak objet2 // TOwner owns the T objets in the stak.34 lass TStak<thisOwner, TOwner> {5 TNode<this, TOwner> head = null;67 T<TOwner> pop() aesses (this) {8 if (head == null) return null;9 T<TOwner> value = head.value();10 head = head.next();11 return value;12 }13 ...14 }15 lass TNode<thisOwner, TOwner> {16 T<TOwner> value;17 TNode<thisOwner, TOwner> next;1819 T<TOwner> value() aesses (this) {20 return value;21 }22 TNode<thisOwner, TOwner> next() aesses (this) {23 return next;24 }25 ...26 }27 lass T<thisOwner> { int x=0; }2829 TStak<thisThread, thisThread> s1 =30 new TStak<thisThread, thisThread>;31 TStak<thisThread, self> s2 =32 new TStak<thisThread, self>;Figure 7: Stak of T Objets in Rae-Free Java
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(T)Figure 8: Ownership Relation for TStaks s1 and s2di�erent TStaks with di�erent protetion mehanisms anbe reated from the same TStak implementation.In Rae-Free Java, methods an ontain aesses lauses tospeify the assumptions that hold at method boundaries.Methods speify the objets they aess that they assume areproteted by externally aquired loks. Callers are requiredto hold the loks on the root owners of the objets spei�edin the aesses lause before they invoke a method. In theexample, the value and next methods in the TNode lassassume that the allers hold the lok on the root owner ofthe this TNode objet. Without the aesses lause, the valueand next methods would not have been well-typed.3.2 Type System to Prevent DeadloksThis setion presents our type system for preventing bothdata raes and deadloks in the ontext of Conurrent Java.To prevent deadloks, programmers speify a partial orderamong all the loks. The type heker statially veri�es thatwhenever a thread holds more than one lok, the threadaquires the loks in the desending order. This setion onlydesribes our basi type system that allows programmers215
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body ::= flevel* �eld* meth*glevel ::= LokLevel l = new j LokLevel l < n.l* > n.l*owner ::= formal j self:n.l j thisThread j efinalmeth ::= t mn(arg* ) aesses (efinal* ) lokslause feglokslause ::= loks (n.l* [lok ℄opt)lok ::= efinall 2 lok level namesFigure 9: Grammar Extensions for Deadlok-Free JavaL1. The lok levels form a partial order.L2. Objets that own themselves are loks. Every lokbelongs to some lok level. The lok level of a lokdoes not hange over time.L3. The neessary and suÆient ondition for a threadto aquire a new lok l is that the levels of all theloks that the thread urrently holds are greaterthan the level of l.L4. A thread may also aquire a lok that it alreadyholds. The lok aquire operation is redundant inthat ase.Figure 10: Lok Level Propertiesto partition the loks into a �xed number of equivalenelasses and speify a partial order among the equivalenelasses. Our system also allows programmers to use reursivetree-based data strutures to desribe the partial order|wedesribe extensions to our basi type system in Setion 5.Figure 9 desribes how to obtain the grammar for Deadlok-Free Java by extending the grammar for Rae-Free Java.We all the resulting language Safe Conurrent Java. SafeConurrent Java allows programmers to de�ne lok levels inlass de�nitions. A lok level is like a stati �eld in Java|a lok level is a per-lass entity rather than a per-objetentity. But unlike stati �elds in Java, lok levels are usedonly for ompile-time type heking and are not preservedat runtime. Programmers an speify a partial order amongthe lok levels using the < and > syntax in the lok leveldelarations. Sine a program has a �xed number of loklevels, our type heker an statially verify that the loklevels do indeed form a partial order. Every lok in SafeConurrent Java belongs to some lok level. Note that theset of loks in Rae-Free Java is exatly the set of objetsthat are the roots of ownership trees. A lok is, therefore,an objet that has self as its �rst owner. In Safe ConurrentJava, every self owner is augmented with the lok level thatthe orresponding lok belongs to. The properties of ourlok levels are summarized in Figure 10.In the example shown in Figure 1, the CombinedAountlass de�nes two lok levels|savingsLevel and hekingLevel.hekingLevel is delared to be less than savingsLevel. A Com-binedAount ontains a savingsAount and a hekingA-ount. These objets have self as their �rst owners|theseobjets are therefore loks. The savingsAount is delaredto belong to savingsLevel while the hekingAount is de-lared to belong to hekingLevel. In the example, both themethods of CombinedAount aquire loks in the desending

1 lass Vetor<self:Vetor.l, elementOwner> {2 LokLevel l = new;34 int elementCount = 0;5 ...6 int size() loks (this) {7 synhronized (this) {8 return elementCount;9 }}1011 boolean isEmpty() loks (this) {12 synhronized (this) {13 return (size() == 0);14 }}15 } Figure 11: Self-Synhronized Vetororder by aquiring the lok on savingsAount before aquir-ing the lok on hekingAount.Methods in Safe Conurrent Java an have loks lausesin addition to aesses lauses to speify assumptions atmethod boundaries. A loks lause an ontain a set of loklevels. These lok levels are the levels of loks that the or-responding method may aquire. To ensure that a programis free of deadloks, a thread that alls the method an onlyhold loks that are of a higher level than the levels spei�edin the loks lause. In the example in Figure 1, both themethods of CombinedAount ontain a loks(savingsLevel)lause. A thread that invokes either of these methods anonly hold loks whose level is greater than savingsLevel.A loks lause an also ontain a lok in addition to lok lev-els. If a loks lause ontains an objet l, then a thread thatinvokes the orresponding method may already hold the lokon objet l. Re-aquiring the lok within the method wouldbe redundant in that ase. This is useful to support thease where a synhronized method of a lass alls anothersynhronized method of the same lass. Figure 11 showspart of a self-synhronized Vetor implemented in Safe Con-urrent Java.2 A self-synhronized lass is a lass that hasself as its �rst owner instead of a formal owner parameter.Methods of a self-synhronized lass an assume that the thisobjet owns itself|the methods an therefore synhronizeon this and aess the this objet without requiring externalloks using the aesses lause. In the example, the isEmptymethod aquires the lok on this and invokes the sizemethodwhih also aquires the lok on this. This does not violateour ondition that loks must be aquired in the desendingorder beause the seond lok aquire is redundant.3.3 Rules for Type ChekingThe previous setions presented the grammar for Safe Con-urrent Java in Figures 3, 6, and 9. This setion desribessome of the important rules for type heking. The full setof rules and the omplete grammar an be found in the ap-pendix. The ore of our type system is a set of rules forreasoning about the typing judgment: P ; E; ls; lmin ` e : t.P , the program being heked, is inluded here to provideinformation about lass de�nitions. E is an environmentproviding types for the free variables of e. ls desribes theset of loks held before e is evaluated. lmin is the minimum2As we mentioned before, all the examples in this paper usean extended language that is syntatially loser to Java.216
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level among the levels of all the loks held before e is evalu-ated. t is the type of e. The judgment P ; E ` e : t statesthat e is of type t, while the judgment P ; E; ls; lmin ` e : tstates that e is of type t provided ls ontains the neessaryloks to safely evaluate e and lmin is greater that the levelsof all the loks that are newly aquired when evaluating e.A typing environment E is de�ned as follows, where f isa formal owner parameter of a lass and lokslause is theloks lause of a method.E ::= ; j E, [�nal℄opt t x j E, owner f j E, lokslauseA lok set ls is de�ned as follows, where RO(x) is the rootowner of x.ls ::= thisThread j ls, lok j ls, RO(e�nal)A minimum lok level lmin is de�ned as follows, whereLUB(n1:l1 ... nk:lk) > ni:li 8i=1::k. Note that LUB(...)is not omputed|it is just an expression used as suh fortype heking. The lok level 1 denotes that no loks areurrently held.lmin ::= 1 j n:l j LUB(n1:l1 ... nk:lk)The rule for aquiring a new lok using synhronized e1 in e2heks that e1 is a lok of some level n:l that is less thanlmin. If the enlosing method has a loks lause that ontainsa lok l, then the rule heks that either e1 is the same objetas l, or the level of e1 is less than the level of l. The rulethen type heks e2 in an extended lok set that inludes e1and with lmin set to n:l. A lok is a �nal expression thatowns itself. A �nal expression is either a �nal variable, or a�eld e.fd where e is a �nal expression and fd is a �nal �eld.[EXP SYNC℄ P ; E `�nal e1 : n0hself:n:l ...i P ` n:l < lmin(E = E1, loks(... l), E2) =) (P ; E ` n:l < level(l)) _ (l = e1)P ; E; ls, e1; n:l ` e2 : t2P ; E; ls; lmin ` synhronized e1 in e2 : t2Before we proeed further with the rules, we give a formalde�nition for RootOwner(e). The root owner of an expres-sion e that points to an objet is the root of the ownershiptree to whih the objet belongs. It ould be thisThread, oran objet that owns itself.[ROOTOWNER THISTHREAD℄P ; E ` e : nhthisThread o�iP ; E ` RootOwner(e) = thisThread[ROOTOWNER SELF℄P ; E ` e : nhself:n0:l0 o�iP ; E ` RootOwner(e) = e

[ROOTOWNER FINAL TRANSITIVE℄P ; E ` e : nho1::niP ; E `�nal o1 : 1 P ; E ` RootOwner(o1) = rP ; E ` RootOwner(e) = rIf the owner of an expression is a formal owner parameter,then we annot determine the root owner of the expressionfrom within the stati sope of the enlosing lass. In thatase, we de�ne the root owner of e to be RO(e).[ROOTOWNER FORMAL℄P ; E ` e : nho1::niE = E1, owner o1, E2P ; E ` RootOwner(e) = RO(e)The rule for aessing �eld e.fd heks that e is a well-typedexpression of some type nho1::ni, where o1::n are atualowner parameters. It veri�es that the lass n with for-mal parameters f1::n delares or inherits a �eld fd of typet. If the �eld is not �nal, the thread must hold the lok onthe root owner of e. Sine t is delared inside the lass, itmight ontain ourrenes of this and the formal lass pa-rameters. When t is used outside the lass, the rule renamesthis with the expression e, and the formal parameters withtheir orresponding atual parameters.[EXP REF℄P ; E; ls; lmin ` e : nho1::ni P ; E ` RootOwner(e) = r(P ` (t fd) 2 nhf1::ni) ^ (r 2 ls)_ (P ` (�nal t fd) 2 nhf1::ni)P ; E; ls; lmin ` e:fd : t[e/this℄[o1=f1℄..[on=fn℄The rule for invoking a method heks that the argumentsare of the right type and that the thread holds the loks onthe root owners of all �nal expressions in the aesses lauseof the method. The rule ensures that lmin is greater than allthe levels spei�ed in the loks lause of the method. If theloks lause ontains a lok l, the rule ensures that either thelevel of l is less than lmin, or the level of l is equal to lminand l is in the lok set (in whih ase re-aquiring l withinthe method is redundant). The rule appropriately renamesexpressions and types used outside their delared ontext.[EXP INVOKE℄Renamed(�) def= �[e/this℄[o1=f1℄..[on=fn℄[e1=y1℄..[ek=yk℄P ; E; ls; lmin ` e : nho1::niP ` (t mn(tj yj j21::k) aesses(e0�) loks(n:l� [l ℄opt) ...)2 nhf1::niP ; E; ls; lmin ` ej : Renamed(tj )P ; E ` RootOwner(Renamed(e0i)) = r0i r0i 2 lsP ` ni:li < lmin lR = Renamed(l)P ; E ` (level(lR) < lmin) _ (level(lR) = lmin) ^ (lR 2 ls)P ; E; ls; lmin ` e.mn(e1::k) : Renamed(t)217
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The rule for type heking a method assumes that the threadholds the loks on the root owners of all the �nal expressionsspei�ed in the aesses lause. The rules also assumes thatfor eah lok held by the thread, the level of the lok isgreater than all the levels spei�ed in the loks lause. Ifthe loks lause of the method ontains a lok l, the ruleassumes that for eah lok held by the thread, either thelevel of the lok is greater than the level of l, or the lok isthe same objet as l. The rule then type heks the methodbody under these assumptions.[METHOD℄ E0 = E, arg1::n, loks(nj :lj j21::k [l ℄opt)P ; E0 `�nal ei : ti P ; E0 ` RootOwner(ei) = rils = thisThread, r1::rlmin = LUB(nj :lj j21::k)P ; E0; ls; lmin ` e : tP ; E ` t mn(arg1::n) aesses(e1::r)loks(nj :lj j21::k [l ℄opt) feg3.4 Soundness of the Type SystemOur type heking rules ensure that for a program to bewell-typed, the program respets the properties desribed inFigures 5 and 10. In partiular, our type heking rules en-sure that a thread an read or write an objet only if thethread holds the lok on the root owner of that objet, andthat whenever a thread holds more than one lok, the threadaquires the loks in the desending order. The propertiesin Figure 5 imply that program is free of data raes, whilethe properties in Figure 10 imply that a program is free ofdeadloks. Well-typed programs in our system are there-fore guaranteed to be free of both data raes and deadloks.A omplete syntati proof [48℄ of type soundness an beonstruted by de�ning an operational semantis for SafeConurrent Java (by extending the operational semantis ofClassi Java [23℄) and then proving that well-typed programsdo not reah an error state and that the generalized subjetredution theorem holds for well-typed programs. The sub-jet redution theorem states that the semanti interpreta-tion of a term's type is invariant under redution. The proofis straight-forward but tedious, so it is omitted here.3.5 Runtime OverheadThe system desribed so far is a purely stati type system.The ownership relations and the lok levels are used onlyfor ompile-time type heking and need not be preserved atruntime. Consequently, Safe Conurrent Java programs haveno runtime overhead when ompared to regular ConurrentJava programs. In fat, one way to ompile and run a SafeConurrent Java program is to onvert it into a ConurrentJava program after type heking, by removing the type pa-rameters, the lok level delarations, the aesses lauses,and the loks lauses from the program. However, the extratype information available in our system an be used to en-able program optimizations. For example, objets that areknown to be thread-loal an be alloated in a thread-loalheap instead of the global heap. A thread-loal heap an beseparately garbage olleted, and when the thread dies, thespae in a thread-loal heap an be relaimed at one.

1 lass A<oa1, oa2> {...};2 lass B<ob1, ob2, ob3> extends A<ob1, ob3> {...};34 lass C<o1> {5 void m(B<this, o1, thisThread> b) {6 A a1;7 B b1;8 b1 = b;9 a1 = b1;10 }11 } Figure 12: An Inompletely Typed Method4 Type InfereneAlthough our type system is expliitly typed in priniple, itwould be onerous to fully annotate every method with theextra type information that our system requires. Instead,we use a ombination of inferene and well-hosen defaultsto signi�antly redue the number of annotations needed inpratie. We emphasize that our approah to inferene ispurely intra-proedural and we do not infer method signa-tures or types of instane variables. Rather, we use a defaultompletion of partial type spei�ations in those ases. Thisapproah permits separate ompilation.4.1 Intra-Proedural Type InfereneIn our system, it is usually unneessary to expliitly aug-ment the types of method-loal variables with their ownerparameters. A simple inferene algorithm an automatiallydedue the owner parameters for otherwise well-typed pro-grams. We illustrate our algorithm with an example. Fig-ure 12 shows a lass hierarhy and an inompletely-typedmethodm. The types of loal variables a1 and b1 inside m donot ontain their owner parameters expliitly. The inferenealgorithm works by �rst augmenting suh inomplete typeswith the appropriate number of distint, unknown ownerparameters. For example, sine a1 is of type A, the algo-rithm augments the type of a1 with two owner parameters.Figure 13 shows augmented types for the example in Fig-ure 12. The goal of the inferene algorithm is to �nd knownowner parameters that an be used in plae of the unknownparameters suh that the program beomes well-typed.The inferene algorithm treats the body of the method as abag of statements. The algorithm works by olleting on-straints on the owner parameters for eah assignment orfuntion invoation in the method body. Figure 14 showsthe onstraints imposed by Statements 8 and 9 in the ex-ample in Figure 12. Note that all the onstraints are ofthe form of equality between two owner parameters. Con-sequently, the onstraints an be solved using the standardUnion-Find algorithm in almost linear time [15℄. If the so-lution is inonsistent, that is, if any two known owner pa-rameters are onstrained to be equal to one another by thesolution, then the inferene algorithm returns an error andthe program does not type hek. Otherwise, if the solutionis inomplete, that is, if there is no known parameter that isequal to an unknown parameter, then the algorithm replaesall suh unknown parameters with thisThread.4.2 Anonymous OwnersConsider the ode in Figure 7. The TStak lass is parame-terized by thisOwner and TOwner. However, the owner pa-218
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6 A<x1, x2> a1;7 B<x3, x4, x5> b1;Figure 13: Types Augmented With Unknown OwnersStatement 8 ==> x3 = this, x4 = o1, x5 = thisThreadStatement 9 ==> x1 = x3, x2 = x5Figure 14: Constraints on Unknown Ownersrameter thisOwner is not used in the stati sope where it isvisible. Similarly, the owner parameter thisOwner for lass Tis not used in the body of lass T. If a lass body or a methodbody does not use an owner parameter, it is unneessary toname the parameter. Our system allows programmers to useh-i for suh anonymous owner parameters. For example, theTStak lass an be delared as lass TStakh-,TOwneri f...g.The T lass an be delared as lass Th-i f...g.4.3 Default TypesIn addition to supporting intra-proedural type infereneand anonymous owners, our system provides well-hosen de-faults to redue the number of annotations needed in manyommon ases. We are also onsidering allowing user-de�neddefaults to over spei� sharing patterns that might ourin user ode. The following are some default types urrentlyprovided by our system.If a lass is delared to be default-single-threaded, our sys-tem adds the following default type annotations whereverthey are not expliitly spei�ed by the programmer. If thetype of any instane variable in the lass or any method ar-gument or return value is not expliitly parameterized, thesystem augments the type with an appropriate number ofthisThread owner parameters. If a method in the lass doesnot ontain an aesses or loks lause, the system adds anempty aesses or loks lause to the method. With these de-fault types, single-threaded programs require no extra typeannotations.If a lass is delared to be default-self-synhronized, our sys-tem adds the following default type annotations whereverthey are not expliitly spei�ed by the programmer. If thetype of any instane variable is not expliitly parameterized,the system augments the type with an appropriate number ofthis owner parameters. If the type of any method argumentor return value is not expliitly parameterized, the systemaugments the type with fresh formal owner parameters. If amethod in the lass does not ontain an aesses lause, thesystem adds an aesses lause that ontains all the methodarguments. If a method in the lass does not ontain a lokslause, the system adds a loks(this) lause. With these de-fault types, many self-synhronized lasses require almost noextra type annotations.5 Extensions to the Basi Type SystemThis setion presents extensions our basi type system.5.1 Lok Level PolymorphismThis setion desribes how our type system supports poly-morphism in lok levels. In the type system desribed in

defn ::= lass nhowner formal*i wherelauseextends  bodyformal ::= f j self:vloklevel ::= n:l j vwherelause ::= where (loklevel > loklevel)*lokslause ::= loks (loklevel* [lok ℄opt)v 2 formal lok level namesFigure 15: Grammar Extensions for Level Polymorphism1 lass Stak<self:v, elementOwner> where (v > Vetor.l) {2 Vetor<self:Vetor.l, elementOwner> ve = new Vetor;3 ...4 int size() loks(this) {5 synhronized (this) {6 return ve.size();7 }}8 }Figure 16: Self-Synhronized Stak Using VetorSetion 3, the level of eah lok is known at ompile-time.But programmers may sometimes want to write ode wherethe exat levels of some loks are not known statially|onlysome ordering onstraints among the unknown lok levels areknown statially. Lok level polymorphism enables this kindof programming. To simplify the presentation, this setiondesribes how our type system supports lok level polymor-phism in the ontext of Safe Conurrent Java. Figure 15shows the grammar extensions to Safe Conurrent Java tosupport lok level polymorphism.Programmers an parameterize lasses with formal lok levelparameters in addition to formal owner parameters. Pro-grammers an speify ordering onstraints among the loklevel parameters using where lauses [17, 41℄. Figure 16shows part of a self-synhronized Stak implemented usingthe self-synhronized Vetor in Figure 11. The lok level ofthe this Stak objet is a formal parameter v. The wherelause onstrains v to be greater than Vetor.l. It is there-fore legal for the synhronized Stak.size method to all thesynhronized Vetor.size method. The type heker veri�esthat the program aquires the loks in the desending order.5.2 Condition VariablesThis setion desribes how our system prevents deadloks inthe presene of ondition variables. Java provides onditionvariables in the form of wait and notify methods on Objet.Sine a thread an wait on a ondition variable as well ason a lok, it is possible to have a deadlok that involvesondition variables as well as loks. There is no simple rulelike the ordering rule for loks that an avoid this kind ofdeadlok. The lok ordering rule depends on the fat that athread must be holding a lok to keep another thread waitingfor that lok. In the ase of onditions, the thread that willnotify annot be distinguished in suh a simple way.To simplify the presentation, this setion desribes how ourtype system handles ondition variables in the ontext ofSafe Conurrent Java. Figure 17 shows the grammar exten-sions to Safe Conurrent Java to support ondition variables.The expression e.wait and e.notify are similar to the wait andnotifyAll methods in Java. e must be a �nal expression thatevaluates to an objet, and the urrent thread must hold219
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lokslause ::= loks ([1℄opt loklevel* [lok ℄opt)e ::= ... j e.wait j e.notifyFigure 17: Grammar Extensions for Condition Variables�eld ::= [�nal℄opt [tree℄opt t fd = eFigure 18: Grammar Extensions for Tree Orderingthe lok on e. On exeuting wait, the urrent thread releasesthe lok on e and suspends itself. The thread resumes exe-ution when some other thread invokes notify on the sameobjet. The thread re-aquires the lok on e before resumingexeution after wait.To prevent deadloks in the presene of ondition variables,our system enfores the following onstraint. A thread aninvoke e.wait only if the thread holds no loks other than thelok on e. Sine a thread releases the lok on e on exeutinge.wait, the above onstraint implies that any thread thatis waiting on a ondition variable holds no loks. This inturn implies that there annot be a deadlok that involvesa ondition variable. To statially verify that a programrespets the above onstraint, our type system requires thatany method m that ontains a all to e.wait must have aloks (1) lause or a loks (1 e) lause. The former lokslause indiates that a thread holds no loks when it invokesm, while the later loks lause indiates that a thread anonly hold the lok on e when it invokes m. Within themethod, our type heker ensures when type heking e.waitthat the lok set only ontains the lok on e. The rules fortype heking are shown below.[EXP WAIT℄ E = E1, loks(1 [e℄opt), E2P ; E `�nal e ls = fegP ; E; ls; lmin ` e.wait : int[EXP NOTIFY℄ P ; E `�nal e e 2 lsP ; E; ls; lmin ` e.notify : int5.3 Tree-Based Partial OrdersThis setion desribes how our type system supports tree-based partial orders. Figure 18 shows the grammar exten-sions to Safe Conurrent Java to support tree-based partialorders. Programmers an delare �elds in objets to be tree�elds. If objet x has a tree �eld fd that ontains a pointerto objet y, we say that there is a tree edge fd from x to y.x is the parent of y and y is a hild of x. Our type systemensures that the graph indued by the set of all tree edges inthe heap is indeed a forest of trees. Any data struture thathas a tree bakbone an be used to desribe the partial orderin our system. This inludes doubly linked lists, trees withparent pointers, threaded trees, and balaned searh trees.Loks that belong to the same lok level are further ordered

Stmt Information in Environment After# Cheking Statement in Figure 223 x=this.rightv=x.leftw=v.right24 x=this.right w is Root this not in Tree(w)v=x.left x not in Tree(w)v not in Tree(w)25 x=this.right v is Root this not in Tree(v)w=x.left x not in Tree(v)w not in Tree(v)26 v=this.right x is Root this not in Tree(x)w=x.left v not in Tree(x)27 v=this.rightw=x.leftx=v.rightFigure 19: Illustration of Flow-Sensitive Analysisaording to the tree order. Suppose x and y are two loks(that is, they are objets that own themselves) that belongto the same lok level. Suppose a thread t holds the lok onx and reads a tree �eld fd of x to get a pointer to y. So yis a hild of x. Our type system then allows thread t to alsoaquire the lok on y while holding the lok on x. Note thatas long as t holds the lok on x, no other thread an modifyx, so no other thread an make y not a hild of x. The typeheking rule is shown below, assuming that for every pair of�nal variables x and y, environment E ontains informationabout whether the objets x and y are related by tree edges.[EXP SYNC CHILD℄8y2ls P ; E ` (level(y) > lmin) _ (y is an anestor of x)x0 2 ls P ; E ` x is a hild of x0P ; E ` level(x) = level(x0) = lminP ; E; ls, x; lmin ` e : tP ; E; ls; lmin ` synhronized x in e : tFigure 2 presents an example with a tree-based partial order.The Node lass is self-synhronized, that is, the this Nodeobjet owns itself. The lok level of the this Node objetis the formal parameter k. A Node has two tree �elds leftand right. The Nodes left and right own themselves and alsobelong to lok level k. Nodes left and right are thereforeordered less than the this Node objet in the partial order.In the example, the rotateRight method aquires the lokson Nodes this, x, and v in the tree order.Our type system allows a limited set of mutations on treesat runtime. The type heker uses a simple intra-proeduralintra-loop ow-sensitive analysis to hek that the mutationsdo not introdue yles in the trees. We illustrate our ow-sensitive analysis using the example in Figure 2. The typeheker keeps the following additional information in the en-vironment E for every pair of �nal variables x and y: 1)If the objets x and y are related by a tree edge, 2) If xis the root of a tree, and 3) If x is a root and y is not inthe tree rooted at x. Figure 19 ontains the informationstored in the environment after the type heking of vari-220
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�eld ::= [�nal℄opt [tree℄opt t fd = e j �nal dag t fd = eFigure 20: Grammar Extensions for DAG Orderingdefn ::= lass nhowner formal*i wherelauseextends  [dynami℄opt bodydynami ::= implements Dynamie ::= ... j synhronized (e+) in fegFigure 21: Grammar Extensions for Runtime Orderingous statements in the rotateRight method in Figure 2. Sinethe analysis is ow-sensitive, the environment hanges afterheking eah statement.The rules for mutating a tree are as follows. Deleting a treeedge (for example, setting a tree �eld to null or over-writinga tree �eld) requires no extra heking. A tree edge from xto x0 may be added only if x0 is the root of a tree and x isnot in the tree rooted at x0. The rule is shown below. Notethat if x0 is a unique pointer to an objet (for example, x0is newly reated), then x0 is trivially a root. Similarly, if aloal variable x ontains a unique pointer, then x annot bein the tree rooted at x0.[EXP TREE ASSIGN℄P ; E; ls; lmin ` x : nho1::niP ` (tree t fd) 2 nhf1::niP ; E ` RootOwner(x) = r r 2 lsP ; E; ls; lmin ` x0 : t[x/this℄[o1=f1℄..[on=fn℄P ; E ` x0 is RootP ; E ` x not in Tree(x0)P ; E; ls; lmin ` x:fd = x0 : t[x/this℄[o1=f1℄..[on=fn℄5.4 DAG-Based Partial OrdersOur type system also allows programmers to use diretedayli graphs (DAGs) to desribe the partial order. Fig-ure 20 shows the grammar extensions to Safe ConurrentJava to support DAG-based partial orders. Programmersan delare �elds in objets to be dag �elds. Our type sys-tem ensures that no objet an be both part of a tree andpart of a DAG. Loks that belong to the same lok level arefurther ordered aording to the DAG-order. DAGs used forpartial orders are monotoni. DAG �elds annot be modi�edone initialized. Only newly reated nodes may be added toa DAG by initializing the newly reated nodes to ontainDAG edges to existing DAG nodes.5.5 Runtime Ordering of LoksIn the type system we desribed so far, the partial order be-tween loks is known statially. However, programmers maysometimes want to write ode where the order annot be de-termined statially. For example, onsider a transfer methodthat reeives two self-synhronized Aount objets a1 anda2. The transfer method aquires the loks on a1 and a2 andtransfers money from a1 to a2. But the ordering betweena1 and a2 may not be known statially within the transfer

1 lass Aount implements Dynami {2 int balane = 0;34 int balane() aesses (this) { return balane; }5 void deposit(int x) aesses (this) { balane += x; }6 void withdraw(int x) aesses (this) { balane -= x; }7 }89 void transfer(Aount<self:v> a1, Aount<self:v> a2, int x)10 loks(v) {11 synhronized (a1, a2) { a1.withdraw(x); a2.deposit(x); }12 } Figure 22: Runtime Ordered Aountsmethod. To avoid deadloks in suh programs, our systemsupports imposing an arbitrary linear order at runtime on agroup of unordered loks. Our system also provides a prim-itive to aquire suh loks in the linear order.Figure 21 shows the grammar extensions to Safe ConurrentJava to support runtime ordering of loks. Programmersan delare a lass to be a subtype of Dynami. Objetsof suh lasses annot ontain tree or dag edges to otherobjets. The runtime imposes an arbitrary linear order onDynami objets by assigning a unique id to eah of them.For example, a runtime an hoose the time of reation ofan objet to be its unique id. The runtime stores the uniqueid in every Dynami objet.Loks of type Dynami that belong to the same lok levelare further ordered based on the linear order. Our systemprovides a primitive to aquire multiple Dynami loks of thesame lok level: synhronized(l1, ..., ln). To prevent dead-loks, the runtime sorts the loks l1...ln based on the linearorder and aquires the loks in the sorted order.3 For exam-ple, in Figure 22, the loks a1 and a2 are of type Dynamiand belong to the same lok level. The synhronized state-ment aquires the loks in the linear order and thus avoidsausing deadloks.6 ExperieneWe have a prototype implementation of our type system.Our implementation is JVM-ompatible [35℄. We trans-late well-typed programs in our system into byteodes thatan run on regular JVMs. Our implementation handles allthe features of the Java language inluding threads, on-strutors, arrays, exeptions, stati �elds, interfaes, run-time downasts, and dynami lass loading. The type sys-tem we implemented is also more expressive than the typesystem we desribed formally in earlier setions of this pa-per. Our implementation supports unsynhronized aessesto immutable objets and objets with unique pointers [7℄.Our implementation also supports parameterized methods inaddition to parameterized lasses. This is useful in manyases. For example, the PrintStream lass has a print(Objet)method. Let us say, the Objet argument is owned by Ob-3Our implementation of this feature runs on regular JVMs.We translate a synhronized statement with multiple loksinto ode that aquires the loks individually in the linearorder. We also translate the ode in onstrutors of Dynamiobjets to store the unique ids in the objets.221
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jetOwner. If we did not have parameterized methods, thenthe PrintStream lass would have to have an ObjetOwner pa-rameter. Not only would this be unneessarily tedious, butit would also mean that all objets that an be printed bya PrintStream must have the same protetion mehanism.Having parameterized methods allows us to implement ageneri print(Objet) method.We also support safe runtime downasts in our implementa-tion. This is important beause Java is not a fully statially-typed language. It allows downasts that are heked atruntime. Suppose an objet with delared type Objethoi isdownast to Vetorho,ei. We annot verify at ompile-timethat e is the right owner parameter even if we assume thatthe objet is indeed a Vetor. We use type passing [45℄ tosupport safe runtime downasts, but we only keep runtimeownership and lok level information for objets that arepotentially involved in downasts to types with multiple pa-rameters. A ompanion tehnial report [5℄ desribes howto do this eÆiently without muh spae or time overhead.Note that our implementation of the type passing approahis JVM-ompatible.To gain preliminary experiene, we implemented a numberof Java programs in our system inluding several lasses fromthe Java libraries. We also implemented some multithreadedserver programs inluding elevator, a real time disrete eventsimulator [46, 11℄, an http server, a hat server, a stok quoteserver, a game server, and phone, a database-baked infor-mation sever. These programs exhibit a variety of sharingpatterns. Our type system is expressive enough to supportthese programs. In eah ase, one we determined the shar-ing pattern of the program, adding the extra type annota-tions was a fairly straight forward proess. On average, wehad to hange about one in thirty lines of ode.In our experiene, we found that threads rarely need to holdmultiple loks at the same time. In ases where threadsdo hold multiple loks simultaneously, the threads usuallyaquire the multiple loks as they ross abstration bound-aries. For example, in elevator, threads aquire the lok on aFloor objet and then invoke synhronized methods on a Ve-tor objet. Even though suh programs use an unboundednumber of loks, these loks an be lassi�ed into a smallnumber of lok levels. These programs are therefore easilyexpressed in our type system.We also note that in ases where threads do hold multipleloks simultaneously, it is usually beause of onservativeprogramming. In the elevator example mentioned above,the Vetor objet is ontained within the Floor objet. A-quiring the lok on the Vetor objet is thus unneessary. Infat, programmers an use an ArrayList instead of a Vetor.The reason many Java programs are onservative is beausethere is no mehanism in Java to prevent data raes or dead-loks. For example, Java programs that use ArrayLists riskdata raes beause ArrayLists may be aessed without ap-propriate synhronization in shared ontexts. But sine ourtype system guarantees data rae freedom and deadlok free-dom, programmers an employ aggressive loking disiplineswithout sari�ing safety.

7 Ownership Types and EnapsulationWe use a variant of ownership types [14, 13℄ to prevent dataraes and deadloks. Ownership types provide a statiallyenforeable way of speifying objet enapsulation. The ideais that an objet may own other subobjets that are part ofits representation. Ownership types are useful for preventingdata raes and deadloks beause the lok that protets anobjet an also protet its subobjets.We have reently developed an ownership type system [6℄that statially enfores objet enapsulation, while support-ing subtyping and onstruts like iterators. Other owner-ship type systems either do not enfore objet enapsula-tion (they enfore weaker restritions instead) [12, 7, 2℄, orthey are not expressive (they do not support subtyping andonstruts like iterators) [14, 13℄. This setion presents adetailed disussion of ownership types. This setion also de-sribes how the type system in this paper an be ombinedwith the type system in [6℄ to statially enfore objet en-apsulation as well as prevent data raes and deadloks.7.1 Objet EnapsulationObjet enapsulation gives programmers the ability to rea-son loally about program orretness. Reasoning about alass in an objet-oriented program involves reasoning aboutthe behavior of objets belonging to the lass. Typially ob-jets point to other subobjets, whih are used to representthe ontaining objet. Loal reasoning about lass orret-ness is possible if the subobjets are fully enapsulated, thatis, if all subobjets are aessible only within the ontainingobjet. This ondition supports loal reasoning beause itensures that outside objets annot interat with the subob-jets without alling methods of the ontaining objet. Theontaining objet is thus in ontrol of its subobjets.However, full enapsulation is often more than is needed.Enapsulation is only required for subobjets that the on-taining objet depends on [33℄. An objet a depends on sub-objet b if a alls methods of b and furthermore these allsexpose mutable behavior of b in a way that a�ets the invari-ants of a. Thus, if a stak of items is implemented using alinked list, the stak only depends on the list but not on theitems ontained in the list. This is beause if ode outsideould manipulate the list, it ould invalidate the orretnessof the stak implementation. But ode outside an safely a-ess the items ontained in the stak beause the stak doesnot all their methods; it only depends on the identities ofthe items and the identities never hange. Similarly, a set ofimmutable elements does not depend on the elements evenif it invokes a.equals(b) to ensure that no two elements a andb in the set are equal, beause the elements are immutable.Ownership types provide a statially enforeable way of spe-ifying objet enapsulation. If an objet a depends on an ob-jet b, programmers an delare that a owns b. An ownershiptype system enfores objet enapsulation if it enfores thefollowing property:E1. Owners as enapsulating objets: If objet z ownsobjet y, but z does not own objet x diretly or tran-sitively, then x annot aess y.222
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Property E1 says that if y is inside the enapsulation bound-ary of z and x is outside the enapsulation boundary, thenx annot aess y. An objet x aesses an objet y if meth-ods of x obtain a pointer to y and an invoke methods ofy. The pointer to y may be stored in a �eld of x, or in aloal variable of a method of x. Consider Figure 4 for anillustration. o9 owns o10. But o9 does not own o6 diretlyor transitively. So o6 annot aess o10. The only objetsthat o6 an aess are: o6 and its hildren, the anestors ofo6 and their hildren, and objets globally aessible withinthe thread, namely objets owned by self and thisThread.47.2 Ownership Type SystemsOwnership type systems use naming to enfore enapsula-tion. The type of an objet inludes the name of its owner.To aess an objet, a program fragment must name thetype of that objet, and hene must name the owner of thatobjet. This setion presents a disussion of the various own-ership type systems and the enapsulation guarantees theyprovide. It also shows how to extend our type system to stat-ially enfore objet enapsulation as well as prevent dataraes and deadloks.Ownership Types [14, 13℄: [14℄ is one of the �rst systemsto introdue ownership types. [13℄ presents a formalizationof the type system. These systems enfore objet enapsu-lation, but do so by signi�antly limiting expressiveness. Inthese systems, a subtype must have the same owners as asuper type. So TStakhthisOwner,TOwneri annot be a sub-type of ObjeththisOwneri. Moreover, one annot expressonstruts like iterators in these systems.Ownership TypesWith Subtyping [12℄: JOE [12℄ buildson previous work in [14, 13℄. JOE supports a natural formof subtyping that is similar to subtyping in parametri typesystems [41, 8, 1, 45℄. A subtype an have di�erent ownersthan a super type. However, the �rst owners must mathbeause the �rst owners own the orresponding objet. Tosupport subtyping, JOE enfores the onstraint that in ev-ery type T ho1; :::; oni with multiple owners, (o1 � oi) for alli 2 f1::ng. Reall from Figure 5 that the ownership relationforms a forest of trees. The notation (x � y) means that ei-ther x is the same as y, or x is a desendant of y in the owner-ship tree, or y is the speial owner self. The type TStakhself,thisi is thus illegal beause (self 6� this). Without this on-straint and with subtyping, JOE would not have providedany meaningful enapsulation guarantees. Figure 24 illus-trates this with an example.To support onstruts like iterators, JOE allows programsto temporarily violate objet enapsulation (Property E1).Figure 23 presents example ode in JOE that violates ob-jet enapsulation. (We adopted the example from the JOEpaper [12℄. But we present this and other examples in oursyntax, that is slightly di�erent from the syntax in the orig-inal papers.) The example shows an iterator for the TStak4Note the analogy with nested proedures: pro P1 fvarx2; pro P2 fvar x3; pro P3 f...ggg. Say xn+1 and Pn+1are hildren of Pn. Then Pn an only aess: Pn and itshildren, the anestors of Pn and their hildren, and globalvariables and proedures.

1 lass TStak<stakOwner, TOwner> {2 TNode<this, TOwner> head = null;3 ...4 TStakEnum<this, TOwner> elements() {5 return new TStakEnum<this, TOwner>(head);6 }7 }8 lass TStakEnum<enumOwner, TOwner> {9 TNode<enumOwner, TOwner> urr;10 TStakEnum(TNode<enumOwner, TOwner> head) {urr = head;}11 T<TOwner> getNext() {...} boolean hasMoreElements() {...}12 }13 lass TStakClient<lientOwner> {14 void test() {15 TStak<this, this> s = new TStak<this, this>;16 TStakEnum<s, this> e = s.elements(); /* Violates E1 */17 }18 } /* owner of e is instantiated with a loal variable! */Figure 23: Violation of Objet Enapsulation in [12℄in Figure 7. In the example, the TStak objet owns the it-erator objet. But a TStakClient objet that is outside theenapsulation boundary of the TStak objet aesses theiterator objet, thus violating objet enapsulation (Prop-erty E1). However, note that type of the iterator ontainsthe TStak objet. So the TStakClient objet an aess theiterator only when the TStak objet is in sope. This en-sures that the violation of objet enapsulation is temporallybounded. JOE enfores the following weak property:E2. Owners as dominators: All paths in the heap fromthe root objet to objet xmust pass through x's owner.Property E2 implies that an appliation thread must �rstaess the owner o of an objet x before it an aess x.Furthermore, in JOE, if the thread reates a path from aloal variable v to x, then either the path must go througho, or the thread must have a loal variable pointing to o andthe type of v must ontain o.Ownership Types for Safe Conurrent Programming:In reent previous work we desribed PRFJ [7℄, a type sys-tem that uses a variant of ownership types to statially pre-vent data raes in multithreaded programs. In this paper,we extend the type system to also prevent deadloks. Thesetype systems support subtyping and onstruts like iterators.Unlike JOE, they do not have the onstraint that the �rstowner � all other owners. The absene of this onstraintallows a program to reate a path to a subobjet that doesnot go through its owner. However, these systems have ef-fets lauses [37℄ that ensure that, even though suh a pathmay exist, the program annot exploit the path to aess thesubobjet unless its owner is in sope. The e�ets lausesrequire every thread to hold the lok on the root owner ofan objet before the thread aesses the objet. The e�etslauses ultimately enable these type systems to enfore thefollowing weak enapsulation property:E3. Owners as apabilities: The owner of objet x mustbe in sope when an appliation aesses x.Property E3 states that when an appliation aesses x, theowner of x must be aessible either through a loal variablel, or through a �eld aess e.fd. The appliation must be223
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1 lass Foo<o> { int x = 0; void aessMe() { x++; } }23 lass SuperType<o> { void some_method() {} }45 lass SubType<o,> extends SuperType<o> {6 Foo<> owner_parameter__owns_me;7 SubType(Foo<> x) {owner_parameter__owns_me = x;}8 void some_method() {owner_parameter__owns_me.aessMe();}9 }1011 lass SomeClass<o> {12 Foo<this> f = new Foo<this>;13 SuperType<self> s = new SubType<self,this>(f);14 SuperType<self> get() {return s;}15 }1617 lass Main<o> {18 void m() {19 SuperType<self> s = null;20 {SomeClass<this>  = new SomeClass<this>; s = .get();}21 s.some_method(); // Violates E1, E2, E322 }23 }// SubType s is not enapsulated within SomeClass// but some_method of SubType aesses Foo objet// owned by SomeClass: Therefore Violates E1// There is path to owner_parameter__owns_me// through s that does not go through : Therefore Violates E2// some_method aesses owner_parameter__owns_me// whose owner  is now garbage: Therefore Violates E3Figure 24: Violation of Enapsulation in [2℄able to all methods on the owner of x, or aquire the lokon the owner of x. (Property E3 thus helps us prevent dataraes.) The owner must be aessible either in the urrentstak frame or in a preeding stak frame. In the later ase,an appliation may use a formal owner parameter to namethe owner of x in the urrent stak frame. Note that JOE [12℄also enfores Property E3. Property E3 ouples the right toaess a subobjet with the ability to name its owner.AliasJava [2℄: AliasJava [2℄ uses ownership types to aidprogram understanding. Like other ownership type systems,AliasJava allows programmers to use ownership informationto reason about aliasing. For example, if variables v1 andv2 are of types Ththisi and Thxi respetively, where x is aformal owner parameter of the enlosing lass, then one anloally infer that v1 and v2 are de�nitely not aliased beausethey refer to objets with di�erent owners. Moreover, bytransitively traing the ow of the owner annotation of avariable v aross method alls, one an identify all the vari-ables that an refer to objets with the same owner as v, andthus identify all the variables that are potential aliases of v.However, unlike other ownership type systems, AliasJavadoes not enfore properties like E1, E2, or E3 whih ei-ther disallow violations of objet enapsulation entirely ortemporally limit suh violations. This is beause AliasJavahas subtyping, but it neither has the onstraint that the�rst owner � all other owners as in JOE [12℄, nor does ithave e�ets lauses as in PRFJ [7℄ and this paper. Fig-ure 24 presents AliasJava ode that violates E1, E2, and E3.(Again, the syntax in the original paper is slightly di�erent.)In the example, SomeClass passes its enapsulated objet fto a publily aessible objet s, leading to a violation of ob-

1 lass TStak<stakOwner, TOwner> {2 TNode<this, TOwner> head = null;3 ...4 TEnumeration<enumOwner, TOwner> elements<enumOwner>()5 where (enumOwner <= stakOwner) {6 return new TStakEnum<enumOwner>;7 }8 lass TStakEnum<enumOwner>9 implements TEnumeration<enumOwner, TOwner> {1011 TNode<TStak.this, TOwner> urrent;1213 TStakEnum() {14 urrent = TStak.this.head;15 }16 T<TOwner> getNext() {17 if (urrent == null) return null;18 T<TOwner> t = urrent.value();19 urrent = urrent.next();20 return t;21 }22 boolean hasMoreElements() {23 return (urrent != null);24 }25 }26 }2728 lass TStakClient<lientOwner> {29 void test() {30 TStak<this, this> s = new TStak<this, this>;31 TEnumeration<this, this> e = s.elements();32 }33 } Figure 25: TStak With Iterator in [6℄jet enapsulation (Property E1). The interation betweensubtyping and ownership enables the reation of a path to fthrough s that does not go through f's owner. Other partsof the program an then aess f using this path even ifthey have no relationship with f's owner. The deoupling off from its owner is further illustrated by the fat that theprogram an aess f even after f's owner beomes garbage.Beause AliasJava does not enfore Properties E1, E2, orE3, it is more exible than other ownership type systems.For example, in AliasJava, an iterator objet that aessesenapsulated subobjets of a olletion an outlive the ol-letion objet. AliasJava thus trades o� enapsulation guar-antees suh as E1, E2, or E3 in favor of added exibility,while still allowing programmers to reason about aliasing.Ownership Types With Subtyping and Iterators [6℄:The ownership type systems desribed above either do notenfore objet enapsulation (they enfore weaker restri-tions instead), or they are not expressive (they do not sup-port subtyping and onstruts like iterators). Enforingobjet enapsulation, while supporting subtyping and on-struts like iterators, was an open problem. In a reentwork [6℄, we provide a satisfatory solution to this problem.Consider an implementation of a stak and an iterator overthe stak. The stak and the iterator annot be in an owner-ship relation. If the stak owns the iterator, one annot usethe iterator objet outside its stak objet. If the iteratorowns the stak, one annot have more than one iterator ob-jet for a given stak objet. In [6℄, we solve this problem byimplementing the iterator as an inner lass of the stak andallowing objets of inner lasses to have privileged aess tothe representations of the orresponding objets of the outer224
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lasses. This approah allows programmers to express on-struts like iterators and yet allows them to reason loallyabout the orretness of their lasses. Our system allows lo-al reasoning beause programmers an reason about a lassand its inner lasses together as a module. Figure 25 showsan iterator implementation for the TStak in Figure 7. [6℄enfores the following enapsulation property:E10. Owners as enapsulating objets: If objet z ownsobjet y, but z does not own objet x diretly or tran-sitively, then x annot aess y, unless x is an innerlass objet of y.Ownership Types for Conurreny and Enapsula-tion: The type system in this paper an be ombined withthe type system in [6℄ to statially enfore objet enap-sulation (Property E10) as well as prevent data raes anddeadloks. The type system in this paper must be modi�edas follows to enfore objet enapsulation. A formal ownerparameter an only be instantiated with: 1) another formalowner parameter, 2) thisThread, 3) this, 4) C.this, where Cis an outer lass, or 5) a lok. The relation (x � y) must beextended to handle thread-loal variables and unique point-ers as follows: either 1) x is the same as y, or 2) x is adesendant of y in the ownership tree, or 3) y is the speialowner self, or thisThread, or unique.7.3 Related Type SystemsEulid [31℄ is one of the �rst languages that onsidered theproblem of aliasing. [27℄ stressed the need for better treat-ment of aliasing in objet-oriented programs. Early work onIslands [26℄ and Balloons [3℄ foused on fully enapsulatedobjets where all subobjets an objet an aess are not a-essible outside the objet. Universes [40℄ also enfores fullenapsulation, exept for read-only referenes. However, fullenapsulation signi�antly limits expressiveness, and is oftenmore than is needed. The work on ESC/Java pointed outthat enapsulation is required only for subobjets that theontaining objet depends on [33℄, but ESC/Java was unableto always enfore enapsulation.Unique Pointers: Linear types [47℄ and unique point-ers [38℄ an also be used to ontrol objet aliasing. Lineartypes have been used in low level languages to support safeexpliit memory dealloation [16℄ and to trak resoure us-age [18℄. Linear types and unique pointers are orthogonal toownership types, but the two an be used in onjuntion toprovide more expressive type systems. PRFJ [7℄ is the �rstsystem to ombine ownership types with unique pointers.The type system in this paper extends PRFJ. AliasJava [2℄also ombines ownership types with unique pointers. A typesystem with ownership types and unique pointers an ex-press onstruts that neither ownership types nor uniquepointers alone an express, while enforing objet enapsu-lation. Figure 26 provides an illustration. The example isadopted from a stok quote server we had implemented inPRFJ [7℄. Type systems without unique pointers suh asJOE [12℄ an also express the example in Figure 26, but notwithout violating objet enapsulation (Property E1 or E10).Region Types: Our ownership type system is related tothe type systems for doing region-based memory manage-

1 lass StokQuoteHandler ... {2 Soket<this> s;3 StokQuoteHandler(Soket<unique> s) ... {4 this.s = s--; // this.s = s; s = null;5 } ...6 }7 lass Main {8 void serveQuotes(...) {9 Soket<unique> s = ...;10 StokQuoteHandler h = new StokQuoteHandler(s--);11 ...12 }13 }Figure 26: Quote Server That Preserves Objet Enap-sulation Using Ownership Types and Unique Pointersment [16, 25℄. In our system, objets are proteted by loks.In region types, objets belong to regions. However, our sys-tem ontains more information about the struture of theobjet graph. In our system, objets own (ontain) otherobjets forming ownership trees. Programmers speify loksonly for the roots of ownership trees. The lok that protetsa root also protets all the objets in the tree. In regiontypes, programmers diretly speify the regions for all ob-jets. Thus, the information in region types orresponds toa attening of the ownership trees. Region types an beombined with ownership types to keep information aboutregions as well as objet ontainment.E�ets: E�ets lauses [37℄ are useful for speifying as-sumptions that must hold at method boundaries. E�etsenable modular heking of programs. PRFJ [7℄ is the �rstsystem to ombine e�ets with ownership types to statiallyprevent data raes. This paper uses e�ets with ownershiptypes to prevent data raes and deadloks. [12℄ and [6℄ alsoombine e�ets with ownership types for program under-standing and supporting safe software upgrades respetively.Data Groups: Data groups [32, 34℄ an be used to namegroups of objets in an e�ets lause to write modular spe-i�ations in the presene of subtyping. Ownership typesprovide an alternate way of writing modular spei�ations.Ownership types an also be used to name groups of objetsin an e�ets lause|the name of an owner an be used toname all the objets transitively owned by the owner. How-ever, beause data groups are implemented using a theoremprover, data groups an be used reason more preisely aboute�ets. Pivot uniqueness in [34℄ is similar to unique point-ers [38℄. Ownership types ombined with unique pointers aremore exible than a system with pivot uniqueness beausethey allow arbitrarily many pointers to an enapsulated ob-jet from objets within the enapsulation boundary.Shape Analysis: Systems suh as TVLA [42℄, PALE [39℄,and Roles [30℄ speify the shape of a loal objet graph inmore detail than ownership types. TVLA an verify prop-erties suh as when the input to the program is a tree, theoutput is also a tree. PALE an verify all the data stru-tures that an be expressed as graph types. Roles an verifyglobal properties suh as the partiipation of objets in mul-tiple data strutures. In ontrast to these systems that takeexponential time for veri�ation, ownership types provide alightweight and pratial way to onstrain aliasing.225
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Parametri Types: Our ownership type system is similarto parametri type systems for Java [41, 8, 1, 45℄, exept thatour parameters are values and not types. Our type system�ts naturally in a language with parameterized types.8 Other Related WorkThere has been muh researh on approahes to detet orprevent data raes and deadloks in multithreaded programs.Stati Tools: Tools like Warlok [44℄ and Sema [29℄ useannotations supplied by programmers to statially detetpotential data raes and deadloks in a program. The Ex-tended Stati Cheker for Java (ESC/Java) [19℄ is anotherannotation based system that uses a theorem prover to stat-ially detet many kinds of errors inluding data raes anddeadloks. [21℄ assumes bugs to be deviant behavior to stat-ially extrat and hek orretness onditions that a sys-tem must obey without requiring programmer annotations.While these tools are useful in pratie, they are not sound,in that they do not ertify that a program is rae-free ordeadlok-free. For example, ESC/Java does not always ver-ify that a partial order of loks delared in a program isindeed a partial order.Dynami Tools: There are many systems that detet dataraes and deadloks dynamially. These inlude systemsdeveloped in the sienti� parallel programming ommu-nity [20℄, tools like Eraser [43℄, and tools for deteting dataraes in Java programs [46, 11℄. Eraser dynamially moni-tors all lok aquisitions to test whether a linear order existsamong the loks that is respeted by every thread. Dynamitools have the advantage that they an hek unannotatedprograms. However, these tools are not omprehensive|they may fail to detet ertain errors due to insuÆient testoverage. Besides, annotated programs are easier to under-stand and maintain beause they expliitly ontain the de-sign deisions made by programmers.Language Mehanisms: To our knowledge, ConurrentPasal is the �rst rae-free programming language [9℄. Pro-grams in Conurrent Pasal use synhronized monitors toprevent data raes. But monitors in Conurrent Pasal arerestrited in that threads an share data with monitors onlyby opying the data. A thread annot pass a pointer to anobjet to a monitor. More reently, researhers have pro-posed type systems to prevent data raes in objet-orientedprograms. Rae Free Java [22℄ extends the stati annotationsin ESC/Java into a formal rae-free type system. Guava [4℄is another dialet of Java for preventing data raes. Ourrae-free type system published earlier [7℄ lets programmerswrite generi ode to implement a lass, and reate di�er-ent objets of the same lass that have di�erent protetionmehanisms. But the above systems do not prevent dead-loks. The type system in this paper extends our rae-freetype system [7℄ to prevent both data raes and deadloks.Message Passing Systems: There are several systemsthat statially hek for data raes and deadloks in mes-sage passing systems [28, 10℄. These systems, however, usea di�erent programming model. For example, programs inthese systems do not aess shared objets in a heap.
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AppendixA Type System for Safe Conurrent JavaThis appendix presents the type system desribed in Setion 3. The grammar for the type system is shown below.P ::= defn* edefn ::= lass nhowner formal*i extends  flevel* �eld* meth*g ::= nhowner+i j Objethowneriowner ::= formal j self:n.l j thisThread j efinallevel ::= LokLevel l = new j LokLevel l < n.l* > n.l*meth ::= t mn(arg* ) aesses (efinal* ) loks (n.l* [lok ℄opt) feg�eld ::= [�nal℄opt t fd = earg ::= [�nal℄opt t xt ::=  j int j booleanformal ::= fe ::= new  j x j x = e j e.fd j e.fd = e j e.mn(e* ) j e;e j let (arg=e) in feg j if (e) then feg j synhronized (e) in feg j fork (x* ) fegefinal ::= elok ::= efinaln 2 lass namesfd 2 �eld namesmn 2 method namesx 2 variable namesf 2 owner namesl 2 lok level namesWe �rst de�ne a number of prediates used in the type system informally. These prediates (exept the last one) are basedon similar prediates from [23℄ and [22℄. We refer the reader to those papers for their preise formulation.Prediate MeaningClassOne(P) No lass is delared twie in PWFClasses(P) There are no yles in the lass hierarhyFieldsOne(P) No lass ontains two �elds with the same name, either delared or inheritedMethodsOne(P) No lass ontains two methods with the same nameOverridesOK(P) Overriding methods have the same return type and parameter types as the methods being overriddenThe aesses lause of an overriding method must be the same or a subset of the overridden methodsThe loks lause of an overriding method must be the same or a subset of the overridden methodsLokLevelsOK(P) There are no yles in the lok levelsA typing environment is de�ned as E ::= ; j E, [�nal℄opt t x j E, owner f j E, lokslauseA lok set is de�ned as ls ::= thisThread j ls, lok j ls, RO(efinal); where RO(e) is the root owner of eA minimum lok level is de�ned as lmin ::= 1 j n:l j LUB(n1:l1 ... nk:lk); where LUB(n1:l1 ... nk:lk) > ni:li 8i=1::kNote that RO(e) and LUB(...) are not omputed|they are just expressions used as suh for type heking.We de�ne the type system using the following judgments. We present the typing rules for these judgments after that.Judgment Meaning` P : t program P yields type tP ` defn defn is a well-formed lass de�nitionP ; E ` wf E is a well-formed typing environmentP ; E ` t t is a well-formed typeP ; E ` t1 <: t2 t1 is a subtype of t2P ; E `owner o o is an ownerP `level n:l n:l is a well-formed lok levelP ` n1:l1 < n2:l2 n1:l1 is less than n2:l2 in the partial order formed by lok levelsP ` n:l < lmin n:l is less than lmin in the partial order formed by lok levelsP ; E ` level(e) = n:l e is a �nal expression that owns itself and the lok level of e is n:lP ; E ` level(e) < lmin e is a �nal expression that owns itself and the lok level of e is less than lminP ; E `�nal e : t e is a �nal expression with type tP ; E ` �eld init �eld init is a well-formed �eld initializerP ` �eld 2 nhf1::ni lass n with formal parameters f1::n delares/inherits �eldP ` meth 2 nhf1::ni lass n with formal parameters f1::n delares/inherits methP ; E ` meth meth is a well-formed methodP ; E ` RootOwner(e) = r r is the root owner of the �nal expression eP ; E ` e : t expression e has type tP ; E; ls; lmin ` e : t expression e has type t and evaluating e will not reate data raes or deadloks228
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` P : t[PROG℄ ClassOne(P) WFClasses(P) FieldsOne(P)MethodsOne(P) OverridesOK(P) LokLevelsOK(P)P = defn1::n e P ` defni P ; ;; thisThread; 1 ` e : t` P : t P ` defn[CLASS℄ if (f1 6= self:n0:l0 j thisThread) then g1 = owner f18i=2::n gi = owner fi E = g1::n, �nal nhf1::ni thisP ; E `  P ; E ` �eldi P ; E ` methiP ` lass nhf1::ni extends  f�eld1::j meth1::kgP ; E ` wf[ENV ;℄P ; ; ` wf [ENV OWNER℄P ; E ` wf f =2 Dom(E)P ; E, owner f ` wf [ENV X℄P ; E ` wf , t x =2 Dom(E)P ; E, [�nal℄opt t x ` wf P ; E ` t[TYPE INT℄P ; E ` int [TYPE BOOLEAN℄P ; E ` boolean [TYPE OBJECT℄P ; E `owner oP ; E ` Objethoi[TYPE SHARED CLASS℄P ` lass nhself:n0:l0 f2::ni ...o1 = self:n0:l0 P ; E `owner o1::nP ; E ` nho1::ni [TYPE THREAD-LOCAL CLASS℄P ` lass nhthisThread f2::ni ...o1 = thisThread P ; E `owner o1::nP ; E ` nho1::ni [TYPE C℄ P ` lass nhf1::ni ...f1 6= self:n0:l0 j thisThread P ; E `owner o1::nP ; E ` nho1::niP ; E ` t1 <: t2[SUBTYPE REFL℄P ; E ` tP ; E ` t <: t [SUBTYPE TRANS℄P ; E ` t1 <: t2 P ; E ` t2 <: t3P ; E ` t1 <: t3 [SUBTYPE CLASS℄ P ; E ` n1ho1::niP ` lass n1hf1::ni extends n2hf1 o�i ...P ; E ` n1ho1::ni <: n2hf1 o�i [o1=f1℄::[on=fn℄P ; E `owner o[OWNER THISTHREAD℄P ; E `owner thisThread [OWNER OTHERTHREAD℄P ; E `owner otherThread [OWNER SELF℄P `level n:lP ; E `owner self:n:l [OWNER EXP℄P ; E `final e : tP ; E `owner e [OWNER FORMAL℄P ; E ` wfE = E1, owner f , E2P ; E `owner fP `level n:l[LEVEL℄P ` lass n... f... Loklevel l ...gP `level n:l P ` n1:l1 < n2:l2[LEVEL <℄P ` lass n1... f... LokLevel l1 < ... n2:l2 ...gP ` n1:l1 < n2:l2 [LEVEL >℄P ` lass n2... f... LokLevel l2 > ... n1:l1 ...gP ` n1:l1 < n2:l2P ` n:l < lmin[LEVEL < INFTY℄lmin = 1P `level n:lP ` n:l < lmin [LEVEL < LUB℄lmin = LUB(... n:l ...)P `level n:lP ` n:l < lmin [LEVEL < CN.L℄lmin = n0:l0P ` n:l < n0:l0P ` n:l < lmin [LEVEL TRANS℄P ` n0:l0 < lminP ` n:l < n0:l0P ` n:l < lmin P ; E ` level(e) = n:l[LEVEL(EXP)℄P ; E `final e : n0hself:n:l ...iP ; E ` level(e) = n:lP ; E ` level(e) < lmin[LEVEL < LEVEL MIN℄P ; E ` level(e) = n:lP ` n:l < lminP ; E ` level(e) < lmin P ; E `final e[FINAL VAR℄P ; E ` wfE = E1, �nal t x, E2P ; E `final x : t [FINAL REF℄P ` (�nal t fd) 2 nhf1::niP ; E `final e : nho1::niP ; E `final e:fd : t[o1=f1℄::[on=fn℄ P ; E ` �eld init[FIELD INIT℄P ; E; thisThread; 1 ` e : tP ; E ` [�nal℄opt t fd = eP ` �eld 2 [FIELD DECLARED℄P ` lass nhf1::ni... f... �eld ...gP ` �eld 2 nhf1::ni [FIELD INHERITED℄P ` �eld 2 nhf1::niP ` lass n0hg1::mi extends nho1::ni...P ` �eld[o1=f1℄::[on=fn℄ 2 n0hg1::mi P ` meth 2 [METHOD DECLARED℄P ` lass nhf1::ni... f... meth ...gP ` meth 2 nhf1::ni229
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[METHOD INHERITED℄P ` meth 2 nhf1::niP ` lass n0hg1::mi extends nho1::ni...P ` meth[o1=f1℄::[on=fn℄ 2 n0hg1::mi P ; E ` method[METHOD℄ E0 = E, arg1::n, loks(nj :lj j21::k [lok ℄opt)P ; E0 `�nal ei : ti P ; E0 ` RootOwner(ei) = ri ls = thisThread, r1::rlmin = LUB(nj :lj j21::k) P ; E0; ls; lmin ` e : tP ; E ` t mn(arg1::n) aesses(e1::r) loks(nj :lj j21::k [lok ℄opt) fegP ; E ` RootOwner(e) = r[ROOTOWNER THISTHREAD℄P ; E ` e : nhthisThread o�iP ; E ` RootOwner(e) = thisThread [ROOTOWNER OTHERTHREAD℄P ; E ` e : nhotherThread o�iP ; E ` RootOwner(e) = otherThread [ROOTOWNER SELF℄P ; E ` e : nhself:n0:l0 o�iP ; E ` RootOwner(e) = e[ROOTOWNER FINAL TRANSITIVE℄P ; E ` e : nho1::niP ; E `final o1 : 1 P ; E ` RootOwner(o1) = rP ; E ` RootOwner(e) = r [ROOTOWNER FORMAL℄P ; E ` e : nho1::niP ; E `owner o1P ; E ` RootOwner(e) = RO(e) P ; E ` e : t[EXP TYPE℄9ls P ; E; ls; 1 ` e : tP ; E ` e : tP ; E; ls ` e : t[EXP SUB℄P ; E; ls; lmin ` e : t0P ; E; ls; lmin ` t0 <: tP ; E; ls; lmin ` e : t [EXP NEW℄ P ; E ` P ; E; ls; lmin ` new  :  [EXP VAR℄P ; E ` wfE = E1, [�nal℄opt t x, E2P ; E; ls; lmin ` x : t [EXP VAR ASSIGN℄P ; E ` wfE = E1, t x, E2 P ; E; ls; lmin ` e : tP ; E; ls; lmin ` x = e : t[EXP SEQ℄P ; E; ls; lmin ` e1 : t1P ; E; ls; lmin ` e2 : t2P ; E; ls; lmin ` e1; e2 : t2 [EXP LET℄ arg = [�nal℄opt t x P ; E; ls; lmin ` e : tP ; E, arg; ls; lmin ` e0 : t0P ; E; ls; lmin ` let (arg = e) in fe0g : t0 [EXP IF℄P ; E; ls; lmin ` e1 : booleanP ; E; ls; lmin ` e2 : t2P ; E; ls; lmin ` if (e1) then fe2g : t2[EXP REF℄P ; E; ls; lmin ` e : nho1::ni P ; E ` RootOwner(e) = r(P ` (t fd) 2 nhf1::ni) ^ (r 2 ls) _ (P ` (�nal t fd) 2 nhf1::ni)P ; E; ls; lmin ` e:fd : t[e/this℄[o1=f1℄..[on=fn℄ [EXP ASSIGN℄P ; E; ls; lmin ` e : nho1::ni P ; E ` RootOwner(e) = r(P ` (t fd) 2 nhf1::ni) ^ (r 2 ls)P ; E; ls; lmin ` e0 : t[e/this℄[o1=f1℄..[on=fn℄P ; E; ls; lmin ` e:fd = e0 : t[e/this℄[o1=f1℄..[on=fn℄[EXP SYNC℄ P ; E ` level(e1) = n:l < lmin(E = E1, loks(... l), E2) =) (P ; E ` n:l < level(l)) _ (l = e1)P ; E; ls, e1; n:l ` e2 : t2P ; E; ls; lmin ` synhronized e1 in e2 : t2 [EXP SYNC REDUNDANT℄e1 2 lsP ; E; ls; lmin ` e2 : t2P ; E; ls; lmin ` synhronized e1 in e2 : t2[EXP INVOKE℄ Renamed(�) def= �[e/this℄[o1=f1℄..[on=fn℄[e1=y1℄..[ek=yk℄P ; E; ls; lmin ` e : nho1::niP ` (t mn(tj yj j21::k) aesses(e0�) loks(n:l� [lok ℄opt) ...) 2 nhf1::niP ; E; ls; lmin ` ej : Renamed(tj)P ; E ` RootOwner(Renamed(e0i)) = r0i r0i 2 lsP ` ni:li < lminlokR = Renamed(lok)P ; E ` (level(lokR) < lmin) _ (level(lokR) = lmin) ^ (lokR 2 ls)P ; E; ls; lmin ` e.mn(e1::k) : Renamed(t)
[EXP FORK℄ P ; E; ls; lmin ` xi : tigi = �nal ti[otherThread/thisThread℄ xiP ; g1::n; thisThread; 1 ` e : tP ; E; ls; lmin ` fork (x1::n) feg : int
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