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1 Introdu
tionMultithreaded programming is be
oming a mainstream pro-gramming pra
ti
e. But multithreaded programming is dif-�
ult and error prone. Multithreaded programs syn
hronizeoperations on shared mutable data to ensure that the op-erations exe
ute atomi
ally. Failure to 
orre
tly syn
hro-nize su
h operations 
an lead to data ra
es or deadlo
ks. Adata ra
e o

urs when two threads 
on
urrently a

ess thesame data without syn
hronization, and at least one of thea

esses is a write. A deadlo
k o

urs when there is a 
y-
le of the form: 8i 2 f0::n� 1g, Threadi holds Lo
ki andThreadi is waiting for Lo
k(i+1)mod n. Syn
hronization er-rors in multithreaded programs are among the most diÆ
ultprogramming errors to dete
t, reprodu
e, and eliminate.This paper presents a new stati
 type system for multi-threaded programs; well-typed programs in our system areguaranteed to be free of data ra
es and deadlo
ks. We re-
ently presented a stati
 type system to prevent data ra
es [7℄.This paper extends the ra
e-free type system to prevent bothdata ra
es and deadlo
ks. The basi
 idea is as follows. Whenprogrammers write multithreaded programs, they alreadyhave a lo
king dis
ipline in mind. Our system allows pro-grammers to spe
ify this lo
king dis
ipline in their programsin the form of type de
larations. Our system stati
ally ver-i�es that a program is 
onsistent with its type de
larations.1.1 Deadlo
k FreedomTo prevent deadlo
ks, programmers partition all the lo
ksinto a �xed number of lo
k levels and spe
ify a partial orderamong the lo
k levels. The type 
he
ker stati
ally veri�esthat whenever a thread holds more than one lo
k, the threada
quires the lo
ks in the des
ending order. Our type systemallows programmers to write 
ode that is polymorphi
 inlo
k levels. Programmers 
an spe
ify a partial order amongformal lo
k level parameters using where 
lauses [17, 41℄.Our system also allows programmers to use re
ursive tree-based data stru
tures to further order the lo
ks within agiven lo
k level. For example, programmers 
an spe
ify thatnodes in a tree must be lo
ked in the tree order. Our sys-tem allows mutations to the data stru
ture that 
hange thepartial order at runtime. The type 
he
ker uses an intra-pro
edural intra-loop 
ow-sensitive analysis to stati
ally ver-ify that the mutations do not introdu
e 
y
les in the partialorder, and that the 
hanging of the partial order does notlead to deadlo
ks. We do not know of any other sound stati
system for preventing deadlo
ks that allows 
hanges to thepartial order at runtime.211
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1.2 Data Ra
e FreedomTo prevent data ra
es, programmers asso
iate every obje
twith a prote
tion me
hanism that ensures that a

esses tothe obje
t never 
reate data ra
es. The prote
tion me
ha-nism of an obje
t 
an spe
ify either the mutual ex
lusion lo
kthat prote
ts the obje
t from unsyn
hronized 
on
urrent a
-
esses, or that threads 
an safely a

ess the obje
t withoutsyn
hronization be
ause either 1) the obje
t is immutable,2) the obje
t is a

essible to a single thread, or 3) there isa unique pointer to the obje
t. Unique pointers are use-ful to support obje
t migration between threads. The type
he
ker stati
ally veri�es that a program uses obje
ts onlyin a

ordan
e with their de
lared prote
tion me
hanisms.Our type system is signi�
antly more expressive than previ-ously proposed type systems for preventing data ra
es [22,4℄. In parti
ular, our type system lets programmers writegeneri
 
ode to implement a 
lass, then 
reate di�erent ob-je
ts of the 
lass that have di�erent prote
tion me
hanisms.We do this by introdu
ing a way of parameterizing 
lassesthat lets programmers defer the prote
tion me
hanism de
i-sion from the time when a 
lass is de�ned to the times whenobje
ts of that 
lass are 
reated.1.3 Ownership TypesWe use a variant of ownership types [14, 13℄ to prevent datara
es and deadlo
ks. Ownership types provide a stati
allyenfor
eable way of spe
ifying obje
t en
apsulation. Owner-ship types are useful for preventing data ra
es and deadlo
ksbe
ause the lo
k that prote
ts an obje
t 
an also prote
t itsen
apsulated obje
ts. In re
ent previous work we presentedPRFJ [7℄, a type system that uses a variant of ownershiptypes to stati
ally prevent data ra
es. PRFJ is the �rsttype system to 
ombine ownership types with unique point-ers [38℄. This enables PRFJ to express 
onstru
ts that nei-ther ownership types nor unique pointers alone 
an express.PRFJ is also the �rst type system to 
ombine ownershiptypes with e�e
ts 
lauses [37℄. This paper extends PRFJ toprevent both data ra
es and deadlo
ks.We have re
ently developed an ownership type system [6℄that stati
ally enfor
es obje
t en
apsulation, while support-ing subtyping and 
onstru
ts like iterators. Other owner-ship type systems either do not enfor
e obje
t en
apsulation(they enfor
e weaker restri
tions instead) [12, 7, 2℄, or theyare not expressive (they do not support subtyping and 
on-stru
ts like iterators) [14, 13℄. We present a detailed dis-
ussion of ownership types in Se
tion 7. We also des
ribehow the type system in this paper 
an be 
ombined with thetype system in [6℄ to stati
ally enfor
e obje
t en
apsulationas well as prevent data ra
es and deadlo
ks.1.4 ContributionsThis paper makes the following 
ontributions:� Stati
 Type System to Prevent Deadlo
ks: Thispaper presents a new stati
 type system to preventdeadlo
ks in Java programs. Our system allows pro-grammers to partition all the lo
ks into a �xed numberof lo
k levels and spe
ify a partial order among thelo
k levels. The type 
he
ker then stati
ally veri�es

that whenever a thread holds more than one lo
k, thethread a
quires the lo
ks in the des
ending order.� Formal Rules for Type Che
king: To simplify thepresentation of key ideas behind our approa
h, thispaper formally presents our type system in the 
ontextof a 
ore subset of Java 
alled Con
urrent Java [7, 22,23℄. Our implementation, however, works for the wholeof the Java language.� Type Inferen
e Algorithm: Although our type sys-tem is expli
itly typed in prin
iple, it would be onerousto fully annotate every method with the extra type in-formation that our system requires. Instead, we usea 
ombination of intra-pro
edural type inferen
e andwell-
hosen defaults to signi�
antly redu
e the num-ber of annotations needed in pra
ti
e. Our approa
hpermits separate 
ompilation.� Lo
k Level Polymorphism: Our type system al-lows programmers write 
ode that is polymorphi
 inlo
k levels. Our system also allows programmers tospe
ify a partial order among formal lo
k level param-eters using where 
lauses [17, 41℄. This feature enablesprogrammers to write 
ode in whi
h the exa
t levels ofsome lo
ks are not known stati
ally, but only some or-dering 
onstraints among the unknown lo
k levels areknown stati
ally.� Support for Condition Variables: In addition tomutual ex
lusion lo
ks, our type system prevents dead-lo
ks in the presen
e of 
ondition variables. Our sys-tem stati
ally enfor
es the 
onstraint that a thread 
aninvoke e.wait only if the thread holds no lo
ks otherthan the lo
k on e. Sin
e a thread releases the lo
kon e on exe
uting e.wait, the above 
onstraint impliesthat any thread that is waiting on a 
ondition variableholds no lo
ks. This in turn implies that there 
annotbe a deadlo
k that involves a 
ondition variable. Oursystem thus prevents the nested monitor problem [36℄.� Partial-Orders Based on Mutable Trees: Oursystem allows programmers to use re
ursive tree-baseddata stru
tures to further order the lo
ks within a givenlo
k level. Our system allows mutations that 
hangethe partial order at runtime. The type 
he
ker usesan intra-pro
edural intra-loop 
ow-sensitive analysisto stati
ally verify that the mutations do not intro-du
e 
y
les in the partial order, and that the 
hangingof the partial order does not lead to deadlo
ks.� Partial-Orders Based on Monotoni
 DAGs: Oursystem also allows programmers to use re
ursive DAG-based data stru
tures to order the lo
ks within a givenlo
k level. DAG edges 
annot be modi�ed on
e ini-tialized. Only newly 
reated nodes may be added to aDAG by initializing the newly 
reated nodes to 
ontainDAG edges to existing DAG nodes.� Runtime Ordering of Lo
ks: Our system supportsimposing an arbitrary linear order at runtime on lo
kswithin a given lo
k level. Our system also provides aprimitive to a
quire su
h lo
ks in the linear order.212
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1 
lass A

ount {2 int balan
e = 0;34 int balan
e() a

esses (this) { return balan
e; }5 void deposit(int x) a

esses (this) { balan
e += x; }6 void withdraw(int x) a

esses (this) { balan
e -= x; }7 }89 
lass CombinedA

ount<readonly> {10 Lo
kLevel savingsLevel = new;11 Lo
kLevel 
he
kingLevel < savingsLevel;12 final A

ount<self:savingsLevel> savingsA

ount13 = new A

ount;14 final A

ount<self:
he
kingLevel> 
he
kingA

ount15 = new A

ount;1617 void transfer(int x) lo
ks(savingsLevel) {18 syn
hronized (savingsA

ount) {19 syn
hronized (
he
kingA

ount) {20 savingsA

ount.withdraw(x);21 
he
kingA

ount.deposit(x);22 }}}23 int 
reditChe
k() lo
ks(savingsLevel) {24 syn
hronized (savingsA

ount) {25 syn
hronized (
he
kingA

ount) {26 return savingsA

ount.balan
e() +27 
he
kingA

ount.balan
e();28 }}}29 ...30 } Figure 1: Combined A

ount Example� Experien
e: We have a prototype implementation ofour system in the 
ontext of Java. Our implementationhandles all the features of Java in
luding threads, 
on-stru
tors, arrays, ex
eptions, stati
 �elds, interfa
es,runtime down
asts, and dynami
 
lass loading. Togain preliminary experien
e, we modi�ed several Javalibraries and multithreaded server programs and imple-mented them in our system. These programs exhibita variety of sharing patterns. We found that our sys-tem is suÆ
iently expressive to support these sharingpatterns and requires little programming overhead.1.5 OutlineThe rest of this paper is organized as follows. Se
tion 2introdu
es our type system using two examples. Se
tion 3presents our basi
 type system for preventing data ra
es anddeadlo
ks. Se
tion 4 des
ribes inferen
e te
hniques that sig-ni�
antly redu
e programming overhead. Se
tion 5 presentsextensions to our basi
 type system to support lo
k levelpolymorphism, 
ondition variables, tree-based partial orders,DAG-based partial orders, and runtime ordering of lo
ks.Se
tion 6 des
ribes our experien
e in using our type system.Se
tion 7 
ontains a dis
ussion of ownership types. Se
tion 8presents other related work and Se
tion 9 
on
ludes.2 ExamplesThis se
tion introdu
es our type system with two examples.The later se
tions explain our type system in greater detail.2.1 Combined A

ount ExampleFigure 1 presents an example program implemented in ourtype system. The program has an A

ount 
lass and a Com-binedA

ount 
lass.

1 
lass Balan
edTree {2 Lo
kLevel l = new;3 Node<self:l> root = new Node;4 }56 
lass Node<self:k> {7 tree Node<self:k> left;8 tree Node<self:k> right;910 // this this11 // / \ / \12 // ... x ... v13 // / \ --> / \14 // v y u x15 // / \ / \16 // u w w y1718 syn
hronized void rotateRight() lo
ks(this) {19 final Node x = this.right; if (x == null) return;20 syn
hronized (x) {21 final Node v = x.left; if (v == null) return;22 syn
hronized (v) {23 final Node w = v.right;24 v.right = null;25 x.left = w;26 this.right = v;27 v.right = x;28 }}}29 ...30 } Figure 2: Tree ExampleTo prevent data ra
es, programmers asso
iate every obje
tin our system with a prote
tion me
hanism. In the example,the CombinedA

ount 
lass is de
lared to be immutable. ACombinedA

ount may not be modi�ed after initialization.The A

ount 
lass is generi
|di�erent A

ount obje
ts mayhave di�erent prote
tion me
hanisms. The CombinedA
-
ount 
lass 
ontains two A

ount �elds|savingsA

ount and
he
kingA

ount. The key word self indi
ates that these twoA

ount obje
ts are prote
ted by their own lo
ks. The type
he
ker stati
ally ensures that a thread holds the lo
ks onthese A

ount obje
ts before a

essing the A

ount obje
ts.To prevent deadlo
ks, programmers asso
iate every lo
k inour system with a lo
k level. In the example, the Com-binedA

ount 
lass de
lares two lo
k levels|savingsLevel and
he
kingLevel. Lo
k levels are purely 
ompile-time entities|they are not preserved at runtime. In the example, 
he
k-ingLevel is de
lared to rank lower than savingsLevel in thepartial order of lo
k levels. The 
he
kingA

ount belongsto 
he
kingLevel, while the savingsA

ount belongs to sav-ingsLevel. The type 
he
ker stati
ally ensures that threadsa
quire these lo
ks in the des
ending order of lo
k levels.Methods in our system may 
ontain a

esses 
lauses to spe
-ify assumptions that hold at method boundaries. The meth-ods of the A

ount 
lass ea
h have an a

esses 
lause thatspe
i�es that the methods a

ess the this A

ount obje
twithout syn
hronization. To prevent data ra
es, the 
allersof an A

ount method must hold the lo
k that prote
ts the
orresponding A

ount obje
t before the 
allers 
an invokethe A

ount method. Without the a

esses 
lauses, the A
-
ount methods would not have been well-typed.Methods in our system may also 
ontain lo
ks 
lauses. The213
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P ::= defn* edefn ::= 
lass 
n extends 
 body
 ::= 
n j Obje
tbody ::= f�eld* meth*gmeth ::= t mn(arg* ) feg�eld ::= [�nal℄opt t fd = earg ::= [�nal℄opt t xt ::= 
 j int j booleane ::= new 
 j x j x = e j e.fd j e.fd = e j e.mn(e* ) je;e j let (arg = e) in feg j if (e) then feg jsyn
hronized (e) in feg j fork (x* ) feg
n 2 
lass namesfd 2 �eld namesmn 2 method namesx 2 variable namesFigure 3: Grammar for Con
urrent Javamethods of the CombinedA

ount 
lass 
ontain a lo
ks 
lauseto indi
ate to 
allers that they may a
quire lo
ks that belongto lo
k levels savingsLevel or lower. To prevent deadlo
ks, thetype 
he
ker stati
ally ensures that 
allers of CombinedA
-
ount methods only hold lo
ks that are of greater lo
k levelsthan savingsLevel. Like the a

esses 
lauses, the lo
ks 
lausesare useful to enable separate 
ompilation.2.2 Tree ExampleFigure 2 presents part of a Balan
edTree implemented in ourtype system. A Balan
edTree is a tree of Nodes. Every Nodeobje
t is de
lared to be prote
ted by its own lo
k. To preventdata ra
es, the type 
he
ker stati
ally ensures that a threadholds the lo
k on a Node obje
t before a

essing the Nodeobje
t. The Node 
lass is parameterized by the formal lo
klevel k. The Node 
lass has two Node �elds left and right.The Nodes left and right also belong to the same lo
k level k.Our system allows programmers to use re
ursive tree-baseddata stru
tures to further order the lo
ks that belong to thesame lo
k level. In the example, the key word tree indi
atesthat the Nodes left and right are ordered lower than the thisNode obje
t in the partial order. To prevent deadlo
ks, thetype 
he
ker stati
ally veri�es that the rotateRight methoda
quires the lo
ks on Nodes this, x, and v in the tree order.The rotateRight method in the example performs a standardrotation operation on the tree to restore the tree balan
e.The type 
he
ker uses an intra-pro
edural intra-loop 
ow-sensitive analysis to stati
ally verify that the mutations donot introdu
e 
y
les in the partial order, and that the 
hang-ing of the partial order does not lead to deadlo
ks.Our type system stati
ally veri�es the absen
e of both datara
es and deadlo
ks in the above examples.3 Basi
 Type SystemThis se
tion des
ribes our basi
 type system. To simplify thepresentation of key ideas behind our approa
h, we des
ribeour type system formally in the 
ontext of a 
ore subset ofJava [24℄ known as Con
urrent Java [7, 22℄. Our implemen-tation, however, works for the whole of the Java language.Con
urrent Java is an extension to a sequential subset ofJava known as Classi
 Java [23℄, and has mu
h of the sametype stru
ture and semanti
s as Classi
 Java. Figure 3 showsthe grammar for Con
urrent Java.

thisThread

o1 o2

o3

Thread1 Objects Potentially Shared ObjectsThread2 Objects

thisThread

o4
o6

o7

o8

o5 o9

o10Figure 4: An Ownership RelationO1. The owner of an obje
t does not 
hange over time.O2. The ownership relation forms a forest of rootedtrees, where the roots 
an have self loops.O3. The ne
essary and suÆ
ient 
ondition for a threadto a

ess to an obje
t is that the thread must holdthe lo
k on the root of the ownership tree that theobje
t belongs to.O4. Every thread impli
itly holds the lo
k on the 
or-responding thisThread owner. A thread 
an there-fore a

ess any obje
t owned by its 
orrespondingthisThread owner without any syn
hronization.Figure 5: Ownership PropertiesEa
h obje
t in Con
urrent Java has an asso
iated lo
k thathas two states|lo
ked and unlo
ked|and is initially un-lo
ked. The expression fork(x* ) feg spawns a new threadwith arguments (x* ) to evaluate e. The evaluation is per-formed only for its e�e
t; the result of e is never used. Notethat the Java me
hanism of starting threads using 
ode ofthe form fThread t=...; t.start();g 
an be expressed equiva-lently in Con
urrent Java as ffork(t) ft.start();gg. The ex-pression syn
hronized (e1) in fe2g works as in Java. e1 shouldevaluate to an obje
t. The evaluating thread holds the lo
kon obje
t e1 while evaluating e2. The value of the syn
hro-nized expression is the result of e2. While one thread holdsa lo
k, any other thread that attempts to a
quire the samelo
k blo
ks until the lo
k is released. A newly forked threaddoes not inherit lo
ks held by its parent thread.A Con
urrent Java program is a sequen
e of 
lass de�nitionsfollowed by an initial expression. A prede�ned 
lass Obje
tis the root of the 
lass hierar
hy. Ea
h variable and �eldde
laration in Con
urrent Java in
ludes an initialization ex-pression and an optional �nal modi�er. If the modi�er ispresent, then the variable or �eld 
annot be updated afterinitialization. Other Con
urrent Java 
onstru
ts are similarto the 
orresponding 
onstru
ts in Java.3.1 Type System to Prevent Data Ra
esThis se
tion presents our type system for preventing datara
es in the 
ontext of Con
urrent Java. Programmers asso-
iate every obje
t with a prote
tion me
hanism that ensuresthat a

esses to the obje
t never 
reate data ra
es. Pro-grammers spe
ify the prote
tion me
hanism for ea
h obje
tas part of the type of the variables that point to that ob-je
t. The type 
an spe
ify either the mutual ex
lusion lo
kthat prote
ts the obje
t from unsyn
hronized 
on
urrent a
-214
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defn ::= 
lass 
nhowner formal*i extends 
 body
 ::= 
nhowner+i j Obje
thowneriowner ::= formal j self j thisThread j efinalmeth ::= t mn(arg* ) a

esses (efinal* ) fegefinal ::= eformal ::= ff 2 owner namesFigure 6: Grammar Extensions for Ra
e-Free Java
esses, or that threads 
an safely a

ess the obje
t withoutsyn
hronization be
ause either 1) the obje
t is immutable,2) the obje
t is a

essible to a single thread, or 3) the vari-able 
ontains the unique pointer to the obje
t. Unique point-ers are useful to support obje
t migration between threads.The type 
he
ker then uses these type spe
i�
ations to stat-i
ally verify that a program uses obje
ts only in a

ordan
ewith their de
lared prote
tion me
hanisms.This se
tion only des
ribes our basi
 type system that han-dles obje
ts prote
ted by mutual ex
lusion lo
ks and thread-lo
al obje
ts that 
an be a

essed without syn
hronization.Our ra
e-free type system also supports unsyn
hronized a
-
esses to immutable obje
ts and obje
ts with unique pointersthat 
an migrate between threads. Our ra
e-free type sys-tem is des
ribed in greater detail in [7℄. The key to our basi
ra
e-free type system is the 
on
ept of obje
t ownership. Ev-ery obje
t in our system has an owner. An obje
t 
an beowned by another obje
t, by itself, or by a spe
ial per-threadowner 
alled thisThread. Obje
ts owned by thisThread, ei-ther dire
tly or transitively, are lo
al to the 
orrespondingthread and 
annot be a

essed by any other thread. Fig-ure 4 presents an example ownership relation. We draw anarrow from obje
t x to obje
t y in the �gure if obje
t x ownsobje
t y. Our type system stati
ally veri�es that a programrespe
ts the ownership properties shown in Figure 5.1Figure 6 shows how to obtain the grammar for Ra
e-FreeJava by extending the grammar for Con
urrent Java. Fig-ure 7 shows a TSta
k program in Ra
e-Free Java. For sim-pli
ity, all the examples in this paper use an extended lan-guage that is synta
ti
ally 
loser to Java. A TSta
k is a sta
kof T obje
ts. A TSta
k is implemented using a linked list. A
lass de�nition in Ra
e-Free Java is parameterized by a listof owners. This parameterization helps programmers writegeneri
 
ode to implement a 
lass, then 
reate di�erent ob-je
ts of the 
lass that have di�erent prote
tion me
hanisms.In Figure 7, the TSta
k 
lass is parameterized by thisOwnerand TOwner. thisOwner owns the this TSta
k obje
t andTOwner owns the T obje
ts 
ontained in the TSta
k. In gen-eral, the �rst formal parameter of a 
lass always owns the thisobje
t. In 
ase of s1, the owner thisThread is used for boththe parameters to instantiate the TSta
k 
lass. This meansthat the main thread owns TSta
k s1 as well as all the T ob-je
ts 
ontained in the TSta
k. In 
ase of s2, the main threadowns the TSta
k but the T obje
ts 
ontained in the TSta
kown themselves. The ownership relation for the TSta
k ob-je
ts s1 and s2 is depi
ted in Figure 8 (assuming the sta
ks
ontains three elements ea
h). This example illustrates how1In our 
omplete ra
e-free type system [7℄, the owner of anobje
t 
an 
hange if there is a unique pointer to the obje
t.

1 // thisOwner owns the TSta
k obje
t2 // TOwner owns the T obje
ts in the sta
k.34 
lass TSta
k<thisOwner, TOwner> {5 TNode<this, TOwner> head = null;67 T<TOwner> pop() a

esses (this) {8 if (head == null) return null;9 T<TOwner> value = head.value();10 head = head.next();11 return value;12 }13 ...14 }15 
lass TNode<thisOwner, TOwner> {16 T<TOwner> value;17 TNode<thisOwner, TOwner> next;1819 T<TOwner> value() a

esses (this) {20 return value;21 }22 TNode<thisOwner, TOwner> next() a

esses (this) {23 return next;24 }25 ...26 }27 
lass T<thisOwner> { int x=0; }2829 TSta
k<thisThread, thisThread> s1 =30 new TSta
k<thisThread, thisThread>;31 TSta
k<thisThread, self> s2 =32 new TSta
k<thisThread, self>;Figure 7: Sta
k of T Obje
ts in Ra
e-Free Java
s1.head
(TNode) (TNode)

s1.head.next s2.head.next.next
(TNode)

s1.head.next.next
(TNode)

s2.head.next.value
s2.head.value s2.head.next.next.value

(T)
(T)

(T)

s2.head.nexts2.head
(TNode) (TNode)

s2 (TStack)

thisThread

s1 (TStack)

s1.head.value
(T) s1.head.next.value

s1.head.next.next.value

(T)
(T)Figure 8: Ownership Relation for TSta
ks s1 and s2di�erent TSta
ks with di�erent prote
tion me
hanisms 
anbe 
reated from the same TSta
k implementation.In Ra
e-Free Java, methods 
an 
ontain a

esses 
lauses tospe
ify the assumptions that hold at method boundaries.Methods spe
ify the obje
ts they a

ess that they assume areprote
ted by externally a
quired lo
ks. Callers are requiredto hold the lo
ks on the root owners of the obje
ts spe
i�edin the a

esses 
lause before they invoke a method. In theexample, the value and next methods in the TNode 
lassassume that the 
allers hold the lo
k on the root owner ofthe this TNode obje
t. Without the a

esses 
lause, the valueand next methods would not have been well-typed.3.2 Type System to Prevent Deadlo
ksThis se
tion presents our type system for preventing bothdata ra
es and deadlo
ks in the 
ontext of Con
urrent Java.To prevent deadlo
ks, programmers spe
ify a partial orderamong all the lo
ks. The type 
he
ker stati
ally veri�es thatwhenever a thread holds more than one lo
k, the threada
quires the lo
ks in the des
ending order. This se
tion onlydes
ribes our basi
 type system that allows programmers215
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body ::= flevel* �eld* meth*glevel ::= Lo
kLevel l = new j Lo
kLevel l < 
n.l* > 
n.l*owner ::= formal j self:
n.l j thisThread j efinalmeth ::= t mn(arg* ) a

esses (efinal* ) lo
ks
lause feglo
ks
lause ::= lo
ks (
n.l* [lo
k ℄opt)lo
k ::= efinall 2 lo
k level namesFigure 9: Grammar Extensions for Deadlo
k-Free JavaL1. The lo
k levels form a partial order.L2. Obje
ts that own themselves are lo
ks. Every lo
kbelongs to some lo
k level. The lo
k level of a lo
kdoes not 
hange over time.L3. The ne
essary and suÆ
ient 
ondition for a threadto a
quire a new lo
k l is that the levels of all thelo
ks that the thread 
urrently holds are greaterthan the level of l.L4. A thread may also a
quire a lo
k that it alreadyholds. The lo
k a
quire operation is redundant inthat 
ase.Figure 10: Lo
k Level Propertiesto partition the lo
ks into a �xed number of equivalen
e
lasses and spe
ify a partial order among the equivalen
e
lasses. Our system also allows programmers to use re
ursivetree-based data stru
tures to des
ribe the partial order|wedes
ribe extensions to our basi
 type system in Se
tion 5.Figure 9 des
ribes how to obtain the grammar for Deadlo
k-Free Java by extending the grammar for Ra
e-Free Java.We 
all the resulting language Safe Con
urrent Java. SafeCon
urrent Java allows programmers to de�ne lo
k levels in
lass de�nitions. A lo
k level is like a stati
 �eld in Java|a lo
k level is a per-
lass entity rather than a per-obje
tentity. But unlike stati
 �elds in Java, lo
k levels are usedonly for 
ompile-time type 
he
king and are not preservedat runtime. Programmers 
an spe
ify a partial order amongthe lo
k levels using the < and > syntax in the lo
k levelde
larations. Sin
e a program has a �xed number of lo
klevels, our type 
he
ker 
an stati
ally verify that the lo
klevels do indeed form a partial order. Every lo
k in SafeCon
urrent Java belongs to some lo
k level. Note that theset of lo
ks in Ra
e-Free Java is exa
tly the set of obje
tsthat are the roots of ownership trees. A lo
k is, therefore,an obje
t that has self as its �rst owner. In Safe Con
urrentJava, every self owner is augmented with the lo
k level thatthe 
orresponding lo
k belongs to. The properties of ourlo
k levels are summarized in Figure 10.In the example shown in Figure 1, the CombinedA

ount
lass de�nes two lo
k levels|savingsLevel and 
he
kingLevel.
he
kingLevel is de
lared to be less than savingsLevel. A Com-binedA

ount 
ontains a savingsA

ount and a 
he
kingA
-
ount. These obje
ts have self as their �rst owners|theseobje
ts are therefore lo
ks. The savingsA

ount is de
laredto belong to savingsLevel while the 
he
kingA

ount is de-
lared to belong to 
he
kingLevel. In the example, both themethods of CombinedA

ount a
quire lo
ks in the des
ending

1 
lass Ve
tor<self:Ve
tor.l, elementOwner> {2 Lo
kLevel l = new;34 int elementCount = 0;5 ...6 int size() lo
ks (this) {7 syn
hronized (this) {8 return elementCount;9 }}1011 boolean isEmpty() lo
ks (this) {12 syn
hronized (this) {13 return (size() == 0);14 }}15 } Figure 11: Self-Syn
hronized Ve
tororder by a
quiring the lo
k on savingsA

ount before a
quir-ing the lo
k on 
he
kingA

ount.Methods in Safe Con
urrent Java 
an have lo
ks 
lausesin addition to a

esses 
lauses to spe
ify assumptions atmethod boundaries. A lo
ks 
lause 
an 
ontain a set of lo
klevels. These lo
k levels are the levels of lo
ks that the 
or-responding method may a
quire. To ensure that a programis free of deadlo
ks, a thread that 
alls the method 
an onlyhold lo
ks that are of a higher level than the levels spe
i�edin the lo
ks 
lause. In the example in Figure 1, both themethods of CombinedA

ount 
ontain a lo
ks(savingsLevel)
lause. A thread that invokes either of these methods 
anonly hold lo
ks whose level is greater than savingsLevel.A lo
ks 
lause 
an also 
ontain a lo
k in addition to lo
k lev-els. If a lo
ks 
lause 
ontains an obje
t l, then a thread thatinvokes the 
orresponding method may already hold the lo
kon obje
t l. Re-a
quiring the lo
k within the method wouldbe redundant in that 
ase. This is useful to support the
ase where a syn
hronized method of a 
lass 
alls anothersyn
hronized method of the same 
lass. Figure 11 showspart of a self-syn
hronized Ve
tor implemented in Safe Con-
urrent Java.2 A self-syn
hronized 
lass is a 
lass that hasself as its �rst owner instead of a formal owner parameter.Methods of a self-syn
hronized 
lass 
an assume that the thisobje
t owns itself|the methods 
an therefore syn
hronizeon this and a

ess the this obje
t without requiring externallo
ks using the a

esses 
lause. In the example, the isEmptymethod a
quires the lo
k on this and invokes the sizemethodwhi
h also a
quires the lo
k on this. This does not violateour 
ondition that lo
ks must be a
quired in the des
endingorder be
ause the se
ond lo
k a
quire is redundant.3.3 Rules for Type Che
kingThe previous se
tions presented the grammar for Safe Con-
urrent Java in Figures 3, 6, and 9. This se
tion des
ribessome of the important rules for type 
he
king. The full setof rules and the 
omplete grammar 
an be found in the ap-pendix. The 
ore of our type system is a set of rules forreasoning about the typing judgment: P ; E; ls; lmin ` e : t.P , the program being 
he
ked, is in
luded here to provideinformation about 
lass de�nitions. E is an environmentproviding types for the free variables of e. ls des
ribes theset of lo
ks held before e is evaluated. lmin is the minimum2As we mentioned before, all the examples in this paper usean extended language that is synta
ti
ally 
loser to Java.216
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level among the levels of all the lo
ks held before e is evalu-ated. t is the type of e. The judgment P ; E ` e : t statesthat e is of type t, while the judgment P ; E; ls; lmin ` e : tstates that e is of type t provided ls 
ontains the ne
essarylo
ks to safely evaluate e and lmin is greater that the levelsof all the lo
ks that are newly a
quired when evaluating e.A typing environment E is de�ned as follows, where f isa formal owner parameter of a 
lass and lo
ks
lause is thelo
ks 
lause of a method.E ::= ; j E, [�nal℄opt t x j E, owner f j E, lo
ks
lauseA lo
k set ls is de�ned as follows, where RO(x) is the rootowner of x.ls ::= thisThread j ls, lo
k j ls, RO(e�nal)A minimum lo
k level lmin is de�ned as follows, whereLUB(
n1:l1 ... 
nk:lk) > 
ni:li 8i=1::k. Note that LUB(...)is not 
omputed|it is just an expression used as su
h fortype 
he
king. The lo
k level 1 denotes that no lo
ks are
urrently held.lmin ::= 1 j 
n:l j LUB(
n1:l1 ... 
nk:lk)The rule for a
quiring a new lo
k using syn
hronized e1 in e2
he
ks that e1 is a lo
k of some level 
n:l that is less thanlmin. If the en
losing method has a lo
ks 
lause that 
ontainsa lo
k l, then the rule 
he
ks that either e1 is the same obje
tas l, or the level of e1 is less than the level of l. The rulethen type 
he
ks e2 in an extended lo
k set that in
ludes e1and with lmin set to 
n:l. A lo
k is a �nal expression thatowns itself. A �nal expression is either a �nal variable, or a�eld e.fd where e is a �nal expression and fd is a �nal �eld.[EXP SYNC℄ P ; E `�nal e1 : 
n0hself:
n:l ...i P ` 
n:l < lmin(E = E1, lo
ks(... l), E2) =) (P ; E ` 
n:l < level(l)) _ (l = e1)P ; E; ls, e1; 
n:l ` e2 : t2P ; E; ls; lmin ` syn
hronized e1 in e2 : t2Before we pro
eed further with the rules, we give a formalde�nition for RootOwner(e). The root owner of an expres-sion e that points to an obje
t is the root of the ownershiptree to whi
h the obje
t belongs. It 
ould be thisThread, oran obje
t that owns itself.[ROOTOWNER THISTHREAD℄P ; E ` e : 
nhthisThread o�iP ; E ` RootOwner(e) = thisThread[ROOTOWNER SELF℄P ; E ` e : 
nhself:
n0:l0 o�iP ; E ` RootOwner(e) = e

[ROOTOWNER FINAL TRANSITIVE℄P ; E ` e : 
nho1::niP ; E `�nal o1 : 
1 P ; E ` RootOwner(o1) = rP ; E ` RootOwner(e) = rIf the owner of an expression is a formal owner parameter,then we 
annot determine the root owner of the expressionfrom within the stati
 s
ope of the en
losing 
lass. In that
ase, we de�ne the root owner of e to be RO(e).[ROOTOWNER FORMAL℄P ; E ` e : 
nho1::niE = E1, owner o1, E2P ; E ` RootOwner(e) = RO(e)The rule for a

essing �eld e.fd 
he
ks that e is a well-typedexpression of some type 
nho1::ni, where o1::n are a
tualowner parameters. It veri�es that the 
lass 
n with for-mal parameters f1::n de
lares or inherits a �eld fd of typet. If the �eld is not �nal, the thread must hold the lo
k onthe root owner of e. Sin
e t is de
lared inside the 
lass, itmight 
ontain o

urren
es of this and the formal 
lass pa-rameters. When t is used outside the 
lass, the rule renamesthis with the expression e, and the formal parameters withtheir 
orresponding a
tual parameters.[EXP REF℄P ; E; ls; lmin ` e : 
nho1::ni P ; E ` RootOwner(e) = r(P ` (t fd) 2 
nhf1::ni) ^ (r 2 ls)_ (P ` (�nal t fd) 2 
nhf1::ni)P ; E; ls; lmin ` e:fd : t[e/this℄[o1=f1℄..[on=fn℄The rule for invoking a method 
he
ks that the argumentsare of the right type and that the thread holds the lo
ks onthe root owners of all �nal expressions in the a

esses 
lauseof the method. The rule ensures that lmin is greater than allthe levels spe
i�ed in the lo
ks 
lause of the method. If thelo
ks 
lause 
ontains a lo
k l, the rule ensures that either thelevel of l is less than lmin, or the level of l is equal to lminand l is in the lo
k set (in whi
h 
ase re-a
quiring l withinthe method is redundant). The rule appropriately renamesexpressions and types used outside their de
lared 
ontext.[EXP INVOKE℄Renamed(�) def= �[e/this℄[o1=f1℄..[on=fn℄[e1=y1℄..[ek=yk℄P ; E; ls; lmin ` e : 
nho1::niP ` (t mn(tj yj j21::k) a

esses(e0�) lo
ks(
n:l� [l ℄opt) ...)2 
nhf1::niP ; E; ls; lmin ` ej : Renamed(tj )P ; E ` RootOwner(Renamed(e0i)) = r0i r0i 2 lsP ` 
ni:li < lmin lR = Renamed(l)P ; E ` (level(lR) < lmin) _ (level(lR) = lmin) ^ (lR 2 ls)P ; E; ls; lmin ` e.mn(e1::k) : Renamed(t)217
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The rule for type 
he
king a method assumes that the threadholds the lo
ks on the root owners of all the �nal expressionsspe
i�ed in the a

esses 
lause. The rules also assumes thatfor ea
h lo
k held by the thread, the level of the lo
k isgreater than all the levels spe
i�ed in the lo
ks 
lause. Ifthe lo
ks 
lause of the method 
ontains a lo
k l, the ruleassumes that for ea
h lo
k held by the thread, either thelevel of the lo
k is greater than the level of l, or the lo
k isthe same obje
t as l. The rule then type 
he
ks the methodbody under these assumptions.[METHOD℄ E0 = E, arg1::n, lo
ks(
nj :lj j21::k [l ℄opt)P ; E0 `�nal ei : ti P ; E0 ` RootOwner(ei) = rils = thisThread, r1::rlmin = LUB(
nj :lj j21::k)P ; E0; ls; lmin ` e : tP ; E ` t mn(arg1::n) a

esses(e1::r)lo
ks(
nj :lj j21::k [l ℄opt) feg3.4 Soundness of the Type SystemOur type 
he
king rules ensure that for a program to bewell-typed, the program respe
ts the properties des
ribed inFigures 5 and 10. In parti
ular, our type 
he
king rules en-sure that a thread 
an read or write an obje
t only if thethread holds the lo
k on the root owner of that obje
t, andthat whenever a thread holds more than one lo
k, the threada
quires the lo
ks in the des
ending order. The propertiesin Figure 5 imply that program is free of data ra
es, whilethe properties in Figure 10 imply that a program is free ofdeadlo
ks. Well-typed programs in our system are there-fore guaranteed to be free of both data ra
es and deadlo
ks.A 
omplete synta
ti
 proof [48℄ of type soundness 
an be
onstru
ted by de�ning an operational semanti
s for SafeCon
urrent Java (by extending the operational semanti
s ofClassi
 Java [23℄) and then proving that well-typed programsdo not rea
h an error state and that the generalized subje
tredu
tion theorem holds for well-typed programs. The sub-je
t redu
tion theorem states that the semanti
 interpreta-tion of a term's type is invariant under redu
tion. The proofis straight-forward but tedious, so it is omitted here.3.5 Runtime OverheadThe system des
ribed so far is a purely stati
 type system.The ownership relations and the lo
k levels are used onlyfor 
ompile-time type 
he
king and need not be preserved atruntime. Consequently, Safe Con
urrent Java programs haveno runtime overhead when 
ompared to regular Con
urrentJava programs. In fa
t, one way to 
ompile and run a SafeCon
urrent Java program is to 
onvert it into a Con
urrentJava program after type 
he
king, by removing the type pa-rameters, the lo
k level de
larations, the a

esses 
lauses,and the lo
ks 
lauses from the program. However, the extratype information available in our system 
an be used to en-able program optimizations. For example, obje
ts that areknown to be thread-lo
al 
an be allo
ated in a thread-lo
alheap instead of the global heap. A thread-lo
al heap 
an beseparately garbage 
olle
ted, and when the thread dies, thespa
e in a thread-lo
al heap 
an be re
laimed at on
e.

1 
lass A<oa1, oa2> {...};2 
lass B<ob1, ob2, ob3> extends A<ob1, ob3> {...};34 
lass C<o
1> {5 void m(B<this, o
1, thisThread> b) {6 A a1;7 B b1;8 b1 = b;9 a1 = b1;10 }11 } Figure 12: An In
ompletely Typed Method4 Type Inferen
eAlthough our type system is expli
itly typed in prin
iple, itwould be onerous to fully annotate every method with theextra type information that our system requires. Instead,we use a 
ombination of inferen
e and well-
hosen defaultsto signi�
antly redu
e the number of annotations needed inpra
ti
e. We emphasize that our approa
h to inferen
e ispurely intra-pro
edural and we do not infer method signa-tures or types of instan
e variables. Rather, we use a default
ompletion of partial type spe
i�
ations in those 
ases. Thisapproa
h permits separate 
ompilation.4.1 Intra-Pro
edural Type Inferen
eIn our system, it is usually unne
essary to expli
itly aug-ment the types of method-lo
al variables with their ownerparameters. A simple inferen
e algorithm 
an automati
allydedu
e the owner parameters for otherwise well-typed pro-grams. We illustrate our algorithm with an example. Fig-ure 12 shows a 
lass hierar
hy and an in
ompletely-typedmethodm. The types of lo
al variables a1 and b1 inside m donot 
ontain their owner parameters expli
itly. The inferen
ealgorithm works by �rst augmenting su
h in
omplete typeswith the appropriate number of distin
t, unknown ownerparameters. For example, sin
e a1 is of type A, the algo-rithm augments the type of a1 with two owner parameters.Figure 13 shows augmented types for the example in Fig-ure 12. The goal of the inferen
e algorithm is to �nd knownowner parameters that 
an be used in pla
e of the unknownparameters su
h that the program be
omes well-typed.The inferen
e algorithm treats the body of the method as abag of statements. The algorithm works by 
olle
ting 
on-straints on the owner parameters for ea
h assignment orfun
tion invo
ation in the method body. Figure 14 showsthe 
onstraints imposed by Statements 8 and 9 in the ex-ample in Figure 12. Note that all the 
onstraints are ofthe form of equality between two owner parameters. Con-sequently, the 
onstraints 
an be solved using the standardUnion-Find algorithm in almost linear time [15℄. If the so-lution is in
onsistent, that is, if any two known owner pa-rameters are 
onstrained to be equal to one another by thesolution, then the inferen
e algorithm returns an error andthe program does not type 
he
k. Otherwise, if the solutionis in
omplete, that is, if there is no known parameter that isequal to an unknown parameter, then the algorithm repla
esall su
h unknown parameters with thisThread.4.2 Anonymous OwnersConsider the 
ode in Figure 7. The TSta
k 
lass is parame-terized by thisOwner and TOwner. However, the owner pa-218
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6 A<x1, x2> a1;7 B<x3, x4, x5> b1;Figure 13: Types Augmented With Unknown OwnersStatement 8 ==> x3 = this, x4 = o
1, x5 = thisThreadStatement 9 ==> x1 = x3, x2 = x5Figure 14: Constraints on Unknown Ownersrameter thisOwner is not used in the stati
 s
ope where it isvisible. Similarly, the owner parameter thisOwner for 
lass Tis not used in the body of 
lass T. If a 
lass body or a methodbody does not use an owner parameter, it is unne
essary toname the parameter. Our system allows programmers to useh-i for su
h anonymous owner parameters. For example, theTSta
k 
lass 
an be de
lared as 
lass TSta
kh-,TOwneri f...g.The T 
lass 
an be de
lared as 
lass Th-i f...g.4.3 Default TypesIn addition to supporting intra-pro
edural type inferen
eand anonymous owners, our system provides well-
hosen de-faults to redu
e the number of annotations needed in many
ommon 
ases. We are also 
onsidering allowing user-de�neddefaults to 
over spe
i�
 sharing patterns that might o

urin user 
ode. The following are some default types 
urrentlyprovided by our system.If a 
lass is de
lared to be default-single-threaded, our sys-tem adds the following default type annotations whereverthey are not expli
itly spe
i�ed by the programmer. If thetype of any instan
e variable in the 
lass or any method ar-gument or return value is not expli
itly parameterized, thesystem augments the type with an appropriate number ofthisThread owner parameters. If a method in the 
lass doesnot 
ontain an a

esses or lo
ks 
lause, the system adds anempty a

esses or lo
ks 
lause to the method. With these de-fault types, single-threaded programs require no extra typeannotations.If a 
lass is de
lared to be default-self-syn
hronized, our sys-tem adds the following default type annotations whereverthey are not expli
itly spe
i�ed by the programmer. If thetype of any instan
e variable is not expli
itly parameterized,the system augments the type with an appropriate number ofthis owner parameters. If the type of any method argumentor return value is not expli
itly parameterized, the systemaugments the type with fresh formal owner parameters. If amethod in the 
lass does not 
ontain an a

esses 
lause, thesystem adds an a

esses 
lause that 
ontains all the methodarguments. If a method in the 
lass does not 
ontain a lo
ks
lause, the system adds a lo
ks(this) 
lause. With these de-fault types, many self-syn
hronized 
lasses require almost noextra type annotations.5 Extensions to the Basi
 Type SystemThis se
tion presents extensions our basi
 type system.5.1 Lo
k Level PolymorphismThis se
tion des
ribes how our type system supports poly-morphism in lo
k levels. In the type system des
ribed in

defn ::= 
lass 
nhowner formal*i where
lauseextends 
 bodyformal ::= f j self:vlo
klevel ::= 
n:l j vwhere
lause ::= where (lo
klevel > lo
klevel)*lo
ks
lause ::= lo
ks (lo
klevel* [lo
k ℄opt)v 2 formal lo
k level namesFigure 15: Grammar Extensions for Level Polymorphism1 
lass Sta
k<self:v, elementOwner> where (v > Ve
tor.l) {2 Ve
tor<self:Ve
tor.l, elementOwner> ve
 = new Ve
tor;3 ...4 int size() lo
ks(this) {5 syn
hronized (this) {6 return ve
.size();7 }}8 }Figure 16: Self-Syn
hronized Sta
k Using Ve
torSe
tion 3, the level of ea
h lo
k is known at 
ompile-time.But programmers may sometimes want to write 
ode wherethe exa
t levels of some lo
ks are not known stati
ally|onlysome ordering 
onstraints among the unknown lo
k levels areknown stati
ally. Lo
k level polymorphism enables this kindof programming. To simplify the presentation, this se
tiondes
ribes how our type system supports lo
k level polymor-phism in the 
ontext of Safe Con
urrent Java. Figure 15shows the grammar extensions to Safe Con
urrent Java tosupport lo
k level polymorphism.Programmers 
an parameterize 
lasses with formal lo
k levelparameters in addition to formal owner parameters. Pro-grammers 
an spe
ify ordering 
onstraints among the lo
klevel parameters using where 
lauses [17, 41℄. Figure 16shows part of a self-syn
hronized Sta
k implemented usingthe self-syn
hronized Ve
tor in Figure 11. The lo
k level ofthe this Sta
k obje
t is a formal parameter v. The where
lause 
onstrains v to be greater than Ve
tor.l. It is there-fore legal for the syn
hronized Sta
k.size method to 
all thesyn
hronized Ve
tor.size method. The type 
he
ker veri�esthat the program a
quires the lo
ks in the des
ending order.5.2 Condition VariablesThis se
tion des
ribes how our system prevents deadlo
ks inthe presen
e of 
ondition variables. Java provides 
onditionvariables in the form of wait and notify methods on Obje
t.Sin
e a thread 
an wait on a 
ondition variable as well ason a lo
k, it is possible to have a deadlo
k that involves
ondition variables as well as lo
ks. There is no simple rulelike the ordering rule for lo
ks that 
an avoid this kind ofdeadlo
k. The lo
k ordering rule depends on the fa
t that athread must be holding a lo
k to keep another thread waitingfor that lo
k. In the 
ase of 
onditions, the thread that willnotify 
annot be distinguished in su
h a simple way.To simplify the presentation, this se
tion des
ribes how ourtype system handles 
ondition variables in the 
ontext ofSafe Con
urrent Java. Figure 17 shows the grammar exten-sions to Safe Con
urrent Java to support 
ondition variables.The expression e.wait and e.notify are similar to the wait andnotifyAll methods in Java. e must be a �nal expression thatevaluates to an obje
t, and the 
urrent thread must hold219
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lo
ks
lause ::= lo
ks ([1℄opt lo
klevel* [lo
k ℄opt)e ::= ... j e.wait j e.notifyFigure 17: Grammar Extensions for Condition Variables�eld ::= [�nal℄opt [tree℄opt t fd = eFigure 18: Grammar Extensions for Tree Orderingthe lo
k on e. On exe
uting wait, the 
urrent thread releasesthe lo
k on e and suspends itself. The thread resumes exe-
ution when some other thread invokes notify on the sameobje
t. The thread re-a
quires the lo
k on e before resumingexe
ution after wait.To prevent deadlo
ks in the presen
e of 
ondition variables,our system enfor
es the following 
onstraint. A thread 
aninvoke e.wait only if the thread holds no lo
ks other than thelo
k on e. Sin
e a thread releases the lo
k on e on exe
utinge.wait, the above 
onstraint implies that any thread thatis waiting on a 
ondition variable holds no lo
ks. This inturn implies that there 
annot be a deadlo
k that involvesa 
ondition variable. To stati
ally verify that a programrespe
ts the above 
onstraint, our type system requires thatany method m that 
ontains a 
all to e.wait must have alo
ks (1) 
lause or a lo
ks (1 e) 
lause. The former lo
ks
lause indi
ates that a thread holds no lo
ks when it invokesm, while the later lo
ks 
lause indi
ates that a thread 
anonly hold the lo
k on e when it invokes m. Within themethod, our type 
he
ker ensures when type 
he
king e.waitthat the lo
k set only 
ontains the lo
k on e. The rules fortype 
he
king are shown below.[EXP WAIT℄ E = E1, lo
ks(1 [e℄opt), E2P ; E `�nal e ls = fegP ; E; ls; lmin ` e.wait : int[EXP NOTIFY℄ P ; E `�nal e e 2 lsP ; E; ls; lmin ` e.notify : int5.3 Tree-Based Partial OrdersThis se
tion des
ribes how our type system supports tree-based partial orders. Figure 18 shows the grammar exten-sions to Safe Con
urrent Java to support tree-based partialorders. Programmers 
an de
lare �elds in obje
ts to be tree�elds. If obje
t x has a tree �eld fd that 
ontains a pointerto obje
t y, we say that there is a tree edge fd from x to y.x is the parent of y and y is a 
hild of x. Our type systemensures that the graph indu
ed by the set of all tree edges inthe heap is indeed a forest of trees. Any data stru
ture thathas a tree ba
kbone 
an be used to des
ribe the partial orderin our system. This in
ludes doubly linked lists, trees withparent pointers, threaded trees, and balan
ed sear
h trees.Lo
ks that belong to the same lo
k level are further ordered

Stmt Information in Environment After# Che
king Statement in Figure 223 x=this.rightv=x.leftw=v.right24 x=this.right w is Root this not in Tree(w)v=x.left x not in Tree(w)v not in Tree(w)25 x=this.right v is Root this not in Tree(v)w=x.left x not in Tree(v)w not in Tree(v)26 v=this.right x is Root this not in Tree(x)w=x.left v not in Tree(x)27 v=this.rightw=x.leftx=v.rightFigure 19: Illustration of Flow-Sensitive Analysisa

ording to the tree order. Suppose x and y are two lo
ks(that is, they are obje
ts that own themselves) that belongto the same lo
k level. Suppose a thread t holds the lo
k onx and reads a tree �eld fd of x to get a pointer to y. So yis a 
hild of x. Our type system then allows thread t to alsoa
quire the lo
k on y while holding the lo
k on x. Note thatas long as t holds the lo
k on x, no other thread 
an modifyx, so no other thread 
an make y not a 
hild of x. The type
he
king rule is shown below, assuming that for every pair of�nal variables x and y, environment E 
ontains informationabout whether the obje
ts x and y are related by tree edges.[EXP SYNC CHILD℄8y2ls P ; E ` (level(y) > lmin) _ (y is an an
estor of x)x0 2 ls P ; E ` x is a 
hild of x0P ; E ` level(x) = level(x0) = lminP ; E; ls, x; lmin ` e : tP ; E; ls; lmin ` syn
hronized x in e : tFigure 2 presents an example with a tree-based partial order.The Node 
lass is self-syn
hronized, that is, the this Nodeobje
t owns itself. The lo
k level of the this Node obje
tis the formal parameter k. A Node has two tree �elds leftand right. The Nodes left and right own themselves and alsobelong to lo
k level k. Nodes left and right are thereforeordered less than the this Node obje
t in the partial order.In the example, the rotateRight method a
quires the lo
kson Nodes this, x, and v in the tree order.Our type system allows a limited set of mutations on treesat runtime. The type 
he
ker uses a simple intra-pro
eduralintra-loop 
ow-sensitive analysis to 
he
k that the mutationsdo not introdu
e 
y
les in the trees. We illustrate our 
ow-sensitive analysis using the example in Figure 2. The type
he
ker keeps the following additional information in the en-vironment E for every pair of �nal variables x and y: 1)If the obje
ts x and y are related by a tree edge, 2) If xis the root of a tree, and 3) If x is a root and y is not inthe tree rooted at x. Figure 19 
ontains the informationstored in the environment after the type 
he
king of vari-220
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�eld ::= [�nal℄opt [tree℄opt t fd = e j �nal dag t fd = eFigure 20: Grammar Extensions for DAG Orderingdefn ::= 
lass 
nhowner formal*i where
lauseextends 
 [dynami
℄opt bodydynami
 ::= implements Dynami
e ::= ... j syn
hronized (e+) in fegFigure 21: Grammar Extensions for Runtime Orderingous statements in the rotateRight method in Figure 2. Sin
ethe analysis is 
ow-sensitive, the environment 
hanges after
he
king ea
h statement.The rules for mutating a tree are as follows. Deleting a treeedge (for example, setting a tree �eld to null or over-writinga tree �eld) requires no extra 
he
king. A tree edge from xto x0 may be added only if x0 is the root of a tree and x isnot in the tree rooted at x0. The rule is shown below. Notethat if x0 is a unique pointer to an obje
t (for example, x0is newly 
reated), then x0 is trivially a root. Similarly, if alo
al variable x 
ontains a unique pointer, then x 
annot bein the tree rooted at x0.[EXP TREE ASSIGN℄P ; E; ls; lmin ` x : 
nho1::niP ` (tree t fd) 2 
nhf1::niP ; E ` RootOwner(x) = r r 2 lsP ; E; ls; lmin ` x0 : t[x/this℄[o1=f1℄..[on=fn℄P ; E ` x0 is RootP ; E ` x not in Tree(x0)P ; E; ls; lmin ` x:fd = x0 : t[x/this℄[o1=f1℄..[on=fn℄5.4 DAG-Based Partial OrdersOur type system also allows programmers to use dire
teda
y
li
 graphs (DAGs) to des
ribe the partial order. Fig-ure 20 shows the grammar extensions to Safe Con
urrentJava to support DAG-based partial orders. Programmers
an de
lare �elds in obje
ts to be dag �elds. Our type sys-tem ensures that no obje
t 
an be both part of a tree andpart of a DAG. Lo
ks that belong to the same lo
k level arefurther ordered a

ording to the DAG-order. DAGs used forpartial orders are monotoni
. DAG �elds 
annot be modi�edon
e initialized. Only newly 
reated nodes may be added toa DAG by initializing the newly 
reated nodes to 
ontainDAG edges to existing DAG nodes.5.5 Runtime Ordering of Lo
ksIn the type system we des
ribed so far, the partial order be-tween lo
ks is known stati
ally. However, programmers maysometimes want to write 
ode where the order 
annot be de-termined stati
ally. For example, 
onsider a transfer methodthat re
eives two self-syn
hronized A

ount obje
ts a1 anda2. The transfer method a
quires the lo
ks on a1 and a2 andtransfers money from a1 to a2. But the ordering betweena1 and a2 may not be known stati
ally within the transfer

1 
lass A

ount implements Dynami
 {2 int balan
e = 0;34 int balan
e() a

esses (this) { return balan
e; }5 void deposit(int x) a

esses (this) { balan
e += x; }6 void withdraw(int x) a

esses (this) { balan
e -= x; }7 }89 void transfer(A

ount<self:v> a1, A

ount<self:v> a2, int x)10 lo
ks(v) {11 syn
hronized (a1, a2) { a1.withdraw(x); a2.deposit(x); }12 } Figure 22: Runtime Ordered A

ountsmethod. To avoid deadlo
ks in su
h programs, our systemsupports imposing an arbitrary linear order at runtime on agroup of unordered lo
ks. Our system also provides a prim-itive to a
quire su
h lo
ks in the linear order.Figure 21 shows the grammar extensions to Safe Con
urrentJava to support runtime ordering of lo
ks. Programmers
an de
lare a 
lass to be a subtype of Dynami
. Obje
tsof su
h 
lasses 
annot 
ontain tree or dag edges to otherobje
ts. The runtime imposes an arbitrary linear order onDynami
 obje
ts by assigning a unique id to ea
h of them.For example, a runtime 
an 
hoose the time of 
reation ofan obje
t to be its unique id. The runtime stores the uniqueid in every Dynami
 obje
t.Lo
ks of type Dynami
 that belong to the same lo
k levelare further ordered based on the linear order. Our systemprovides a primitive to a
quire multiple Dynami
 lo
ks of thesame lo
k level: syn
hronized(l1, ..., ln). To prevent dead-lo
ks, the runtime sorts the lo
ks l1...ln based on the linearorder and a
quires the lo
ks in the sorted order.3 For exam-ple, in Figure 22, the lo
ks a1 and a2 are of type Dynami
and belong to the same lo
k level. The syn
hronized state-ment a
quires the lo
ks in the linear order and thus avoids
ausing deadlo
ks.6 Experien
eWe have a prototype implementation of our type system.Our implementation is JVM-
ompatible [35℄. We trans-late well-typed programs in our system into byte
odes that
an run on regular JVMs. Our implementation handles allthe features of the Java language in
luding threads, 
on-stru
tors, arrays, ex
eptions, stati
 �elds, interfa
es, run-time down
asts, and dynami
 
lass loading. The type sys-tem we implemented is also more expressive than the typesystem we des
ribed formally in earlier se
tions of this pa-per. Our implementation supports unsyn
hronized a

essesto immutable obje
ts and obje
ts with unique pointers [7℄.Our implementation also supports parameterized methods inaddition to parameterized 
lasses. This is useful in many
ases. For example, the PrintStream 
lass has a print(Obje
t)method. Let us say, the Obje
t argument is owned by Ob-3Our implementation of this feature runs on regular JVMs.We translate a syn
hronized statement with multiple lo
ksinto 
ode that a
quires the lo
ks individually in the linearorder. We also translate the 
ode in 
onstru
tors of Dynami
obje
ts to store the unique ids in the obje
ts.221
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je
tOwner. If we did not have parameterized methods, thenthe PrintStream 
lass would have to have an Obje
tOwner pa-rameter. Not only would this be unne
essarily tedious, butit would also mean that all obje
ts that 
an be printed bya PrintStream must have the same prote
tion me
hanism.Having parameterized methods allows us to implement ageneri
 print(Obje
t) method.We also support safe runtime down
asts in our implementa-tion. This is important be
ause Java is not a fully stati
ally-typed language. It allows down
asts that are 
he
ked atruntime. Suppose an obje
t with de
lared type Obje
thoi isdown
ast to Ve
torho,ei. We 
annot verify at 
ompile-timethat e is the right owner parameter even if we assume thatthe obje
t is indeed a Ve
tor. We use type passing [45℄ tosupport safe runtime down
asts, but we only keep runtimeownership and lo
k level information for obje
ts that arepotentially involved in down
asts to types with multiple pa-rameters. A 
ompanion te
hni
al report [5℄ des
ribes howto do this eÆ
iently without mu
h spa
e or time overhead.Note that our implementation of the type passing approa
his JVM-
ompatible.To gain preliminary experien
e, we implemented a numberof Java programs in our system in
luding several 
lasses fromthe Java libraries. We also implemented some multithreadedserver programs in
luding elevator, a real time dis
rete eventsimulator [46, 11℄, an http server, a 
hat server, a sto
k quoteserver, a game server, and phone, a database-ba
ked infor-mation sever. These programs exhibit a variety of sharingpatterns. Our type system is expressive enough to supportthese programs. In ea
h 
ase, on
e we determined the shar-ing pattern of the program, adding the extra type annota-tions was a fairly straight forward pro
ess. On average, wehad to 
hange about one in thirty lines of 
ode.In our experien
e, we found that threads rarely need to holdmultiple lo
ks at the same time. In 
ases where threadsdo hold multiple lo
ks simultaneously, the threads usuallya
quire the multiple lo
ks as they 
ross abstra
tion bound-aries. For example, in elevator, threads a
quire the lo
k on aFloor obje
t and then invoke syn
hronized methods on a Ve
-tor obje
t. Even though su
h programs use an unboundednumber of lo
ks, these lo
ks 
an be 
lassi�ed into a smallnumber of lo
k levels. These programs are therefore easilyexpressed in our type system.We also note that in 
ases where threads do hold multiplelo
ks simultaneously, it is usually be
ause of 
onservativeprogramming. In the elevator example mentioned above,the Ve
tor obje
t is 
ontained within the Floor obje
t. A
-quiring the lo
k on the Ve
tor obje
t is thus unne
essary. Infa
t, programmers 
an use an ArrayList instead of a Ve
tor.The reason many Java programs are 
onservative is be
ausethere is no me
hanism in Java to prevent data ra
es or dead-lo
ks. For example, Java programs that use ArrayLists riskdata ra
es be
ause ArrayLists may be a

essed without ap-propriate syn
hronization in shared 
ontexts. But sin
e ourtype system guarantees data ra
e freedom and deadlo
k free-dom, programmers 
an employ aggressive lo
king dis
iplineswithout sa
ri�
ing safety.

7 Ownership Types and En
apsulationWe use a variant of ownership types [14, 13℄ to prevent datara
es and deadlo
ks. Ownership types provide a stati
allyenfor
eable way of spe
ifying obje
t en
apsulation. The ideais that an obje
t may own other subobje
ts that are part ofits representation. Ownership types are useful for preventingdata ra
es and deadlo
ks be
ause the lo
k that prote
ts anobje
t 
an also prote
t its subobje
ts.We have re
ently developed an ownership type system [6℄that stati
ally enfor
es obje
t en
apsulation, while support-ing subtyping and 
onstru
ts like iterators. Other owner-ship type systems either do not enfor
e obje
t en
apsula-tion (they enfor
e weaker restri
tions instead) [12, 7, 2℄, orthey are not expressive (they do not support subtyping and
onstru
ts like iterators) [14, 13℄. This se
tion presents adetailed dis
ussion of ownership types. This se
tion also de-s
ribes how the type system in this paper 
an be 
ombinedwith the type system in [6℄ to stati
ally enfor
e obje
t en-
apsulation as well as prevent data ra
es and deadlo
ks.7.1 Obje
t En
apsulationObje
t en
apsulation gives programmers the ability to rea-son lo
ally about program 
orre
tness. Reasoning about a
lass in an obje
t-oriented program involves reasoning aboutthe behavior of obje
ts belonging to the 
lass. Typi
ally ob-je
ts point to other subobje
ts, whi
h are used to representthe 
ontaining obje
t. Lo
al reasoning about 
lass 
orre
t-ness is possible if the subobje
ts are fully en
apsulated, thatis, if all subobje
ts are a

essible only within the 
ontainingobje
t. This 
ondition supports lo
al reasoning be
ause itensures that outside obje
ts 
annot intera
t with the subob-je
ts without 
alling methods of the 
ontaining obje
t. The
ontaining obje
t is thus in 
ontrol of its subobje
ts.However, full en
apsulation is often more than is needed.En
apsulation is only required for subobje
ts that the 
on-taining obje
t depends on [33℄. An obje
t a depends on sub-obje
t b if a 
alls methods of b and furthermore these 
allsexpose mutable behavior of b in a way that a�e
ts the invari-ants of a. Thus, if a sta
k of items is implemented using alinked list, the sta
k only depends on the list but not on theitems 
ontained in the list. This is be
ause if 
ode outside
ould manipulate the list, it 
ould invalidate the 
orre
tnessof the sta
k implementation. But 
ode outside 
an safely a
-
ess the items 
ontained in the sta
k be
ause the sta
k doesnot 
all their methods; it only depends on the identities ofthe items and the identities never 
hange. Similarly, a set ofimmutable elements does not depend on the elements evenif it invokes a.equals(b) to ensure that no two elements a andb in the set are equal, be
ause the elements are immutable.Ownership types provide a stati
ally enfor
eable way of spe
-ifying obje
t en
apsulation. If an obje
t a depends on an ob-je
t b, programmers 
an de
lare that a owns b. An ownershiptype system enfor
es obje
t en
apsulation if it enfor
es thefollowing property:E1. Owners as en
apsulating obje
ts: If obje
t z ownsobje
t y, but z does not own obje
t x dire
tly or tran-sitively, then x 
annot a

ess y.222
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Property E1 says that if y is inside the en
apsulation bound-ary of z and x is outside the en
apsulation boundary, thenx 
annot a

ess y. An obje
t x a

esses an obje
t y if meth-ods of x obtain a pointer to y and 
an invoke methods ofy. The pointer to y may be stored in a �eld of x, or in alo
al variable of a method of x. Consider Figure 4 for anillustration. o9 owns o10. But o9 does not own o6 dire
tlyor transitively. So o6 
annot a

ess o10. The only obje
tsthat o6 
an a

ess are: o6 and its 
hildren, the an
estors ofo6 and their 
hildren, and obje
ts globally a

essible withinthe thread, namely obje
ts owned by self and thisThread.47.2 Ownership Type SystemsOwnership type systems use naming to enfor
e en
apsula-tion. The type of an obje
t in
ludes the name of its owner.To a

ess an obje
t, a program fragment must name thetype of that obje
t, and hen
e must name the owner of thatobje
t. This se
tion presents a dis
ussion of the various own-ership type systems and the en
apsulation guarantees theyprovide. It also shows how to extend our type system to stat-i
ally enfor
e obje
t en
apsulation as well as prevent datara
es and deadlo
ks.Ownership Types [14, 13℄: [14℄ is one of the �rst systemsto introdu
e ownership types. [13℄ presents a formalizationof the type system. These systems enfor
e obje
t en
apsu-lation, but do so by signi�
antly limiting expressiveness. Inthese systems, a subtype must have the same owners as asuper type. So TSta
khthisOwner,TOwneri 
annot be a sub-type of Obje
ththisOwneri. Moreover, one 
annot express
onstru
ts like iterators in these systems.Ownership TypesWith Subtyping [12℄: JOE [12℄ buildson previous work in [14, 13℄. JOE supports a natural formof subtyping that is similar to subtyping in parametri
 typesystems [41, 8, 1, 45℄. A subtype 
an have di�erent ownersthan a super type. However, the �rst owners must mat
hbe
ause the �rst owners own the 
orresponding obje
t. Tosupport subtyping, JOE enfor
es the 
onstraint that in ev-ery type T ho1; :::; oni with multiple owners, (o1 � oi) for alli 2 f1::ng. Re
all from Figure 5 that the ownership relationforms a forest of trees. The notation (x � y) means that ei-ther x is the same as y, or x is a des
endant of y in the owner-ship tree, or y is the spe
ial owner self. The type TSta
khself,thisi is thus illegal be
ause (self 6� this). Without this 
on-straint and with subtyping, JOE would not have providedany meaningful en
apsulation guarantees. Figure 24 illus-trates this with an example.To support 
onstru
ts like iterators, JOE allows programsto temporarily violate obje
t en
apsulation (Property E1).Figure 23 presents example 
ode in JOE that violates ob-je
t en
apsulation. (We adopted the example from the JOEpaper [12℄. But we present this and other examples in oursyntax, that is slightly di�erent from the syntax in the orig-inal papers.) The example shows an iterator for the TSta
k4Note the analogy with nested pro
edures: pro
 P1 fvarx2; pro
 P2 fvar x3; pro
 P3 f...ggg. Say xn+1 and Pn+1are 
hildren of Pn. Then Pn 
an only a

ess: Pn and its
hildren, the an
estors of Pn and their 
hildren, and globalvariables and pro
edures.

1 
lass TSta
k<sta
kOwner, TOwner> {2 TNode<this, TOwner> head = null;3 ...4 TSta
kEnum<this, TOwner> elements() {5 return new TSta
kEnum<this, TOwner>(head);6 }7 }8 
lass TSta
kEnum<enumOwner, TOwner> {9 TNode<enumOwner, TOwner> 
urr;10 TSta
kEnum(TNode<enumOwner, TOwner> head) {
urr = head;}11 T<TOwner> getNext() {...} boolean hasMoreElements() {...}12 }13 
lass TSta
kClient<
lientOwner> {14 void test() {15 TSta
k<this, this> s = new TSta
k<this, this>;16 TSta
kEnum<s, this> e = s.elements(); /* Violates E1 */17 }18 } /* owner of e is instantiated with a lo
al variable! */Figure 23: Violation of Obje
t En
apsulation in [12℄in Figure 7. In the example, the TSta
k obje
t owns the it-erator obje
t. But a TSta
kClient obje
t that is outside theen
apsulation boundary of the TSta
k obje
t a

esses theiterator obje
t, thus violating obje
t en
apsulation (Prop-erty E1). However, note that type of the iterator 
ontainsthe TSta
k obje
t. So the TSta
kClient obje
t 
an a

ess theiterator only when the TSta
k obje
t is in s
ope. This en-sures that the violation of obje
t en
apsulation is temporallybounded. JOE enfor
es the following weak property:E2. Owners as dominators: All paths in the heap fromthe root obje
t to obje
t xmust pass through x's owner.Property E2 implies that an appli
ation thread must �rsta

ess the owner o of an obje
t x before it 
an a

ess x.Furthermore, in JOE, if the thread 
reates a path from alo
al variable v to x, then either the path must go througho, or the thread must have a lo
al variable pointing to o andthe type of v must 
ontain o.Ownership Types for Safe Con
urrent Programming:In re
ent previous work we des
ribed PRFJ [7℄, a type sys-tem that uses a variant of ownership types to stati
ally pre-vent data ra
es in multithreaded programs. In this paper,we extend the type system to also prevent deadlo
ks. Thesetype systems support subtyping and 
onstru
ts like iterators.Unlike JOE, they do not have the 
onstraint that the �rstowner � all other owners. The absen
e of this 
onstraintallows a program to 
reate a path to a subobje
t that doesnot go through its owner. However, these systems have ef-fe
ts 
lauses [37℄ that ensure that, even though su
h a pathmay exist, the program 
annot exploit the path to a

ess thesubobje
t unless its owner is in s
ope. The e�e
ts 
lausesrequire every thread to hold the lo
k on the root owner ofan obje
t before the thread a

esses the obje
t. The e�e
ts
lauses ultimately enable these type systems to enfor
e thefollowing weak en
apsulation property:E3. Owners as 
apabilities: The owner of obje
t x mustbe in s
ope when an appli
ation a

esses x.Property E3 states that when an appli
ation a

esses x, theowner of x must be a

essible either through a lo
al variablel, or through a �eld a

ess e.fd. The appli
ation must be223
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1 
lass Foo<o> { int x = 0; void a

essMe() { x++; } }23 
lass SuperType<o> { void some_method() {} }45 
lass SubType<o,
> extends SuperType<o> {6 Foo<
> owner_parameter_
_owns_me;7 SubType(Foo<
> x) {owner_parameter_
_owns_me = x;}8 void some_method() {owner_parameter_
_owns_me.a

essMe();}9 }1011 
lass SomeClass<o> {12 Foo<this> f = new Foo<this>;13 SuperType<self> s = new SubType<self,this>(f);14 SuperType<self> get() {return s;}15 }1617 
lass Main<o> {18 void m() {19 SuperType<self> s = null;20 {SomeClass<this> 
 = new SomeClass<this>; s = 
.get();}21 s.some_method(); // Violates E1, E2, E322 }23 }// SubType s is not en
apsulated within SomeClass// but some_method of SubType a

esses Foo obje
t// owned by SomeClass: Therefore Violates E1// There is path to owner_parameter_
_owns_me// through s that does not go through 
: Therefore Violates E2// some_method a

esses owner_parameter_
_owns_me// whose owner 
 is now garbage: Therefore Violates E3Figure 24: Violation of En
apsulation in [2℄able to 
all methods on the owner of x, or a
quire the lo
kon the owner of x. (Property E3 thus helps us prevent datara
es.) The owner must be a

essible either in the 
urrentsta
k frame or in a pre
eding sta
k frame. In the later 
ase,an appli
ation may use a formal owner parameter to namethe owner of x in the 
urrent sta
k frame. Note that JOE [12℄also enfor
es Property E3. Property E3 
ouples the right toa

ess a subobje
t with the ability to name its owner.AliasJava [2℄: AliasJava [2℄ uses ownership types to aidprogram understanding. Like other ownership type systems,AliasJava allows programmers to use ownership informationto reason about aliasing. For example, if variables v1 andv2 are of types Ththisi and Thxi respe
tively, where x is aformal owner parameter of the en
losing 
lass, then one 
anlo
ally infer that v1 and v2 are de�nitely not aliased be
ausethey refer to obje
ts with di�erent owners. Moreover, bytransitively tra
ing the 
ow of the owner annotation of avariable v a
ross method 
alls, one 
an identify all the vari-ables that 
an refer to obje
ts with the same owner as v, andthus identify all the variables that are potential aliases of v.However, unlike other ownership type systems, AliasJavadoes not enfor
e properties like E1, E2, or E3 whi
h ei-ther disallow violations of obje
t en
apsulation entirely ortemporally limit su
h violations. This is be
ause AliasJavahas subtyping, but it neither has the 
onstraint that the�rst owner � all other owners as in JOE [12℄, nor does ithave e�e
ts 
lauses as in PRFJ [7℄ and this paper. Fig-ure 24 presents AliasJava 
ode that violates E1, E2, and E3.(Again, the syntax in the original paper is slightly di�erent.)In the example, SomeClass passes its en
apsulated obje
t fto a publi
ly a

essible obje
t s, leading to a violation of ob-

1 
lass TSta
k<sta
kOwner, TOwner> {2 TNode<this, TOwner> head = null;3 ...4 TEnumeration<enumOwner, TOwner> elements<enumOwner>()5 where (enumOwner <= sta
kOwner) {6 return new TSta
kEnum<enumOwner>;7 }8 
lass TSta
kEnum<enumOwner>9 implements TEnumeration<enumOwner, TOwner> {1011 TNode<TSta
k.this, TOwner> 
urrent;1213 TSta
kEnum() {14 
urrent = TSta
k.this.head;15 }16 T<TOwner> getNext() {17 if (
urrent == null) return null;18 T<TOwner> t = 
urrent.value();19 
urrent = 
urrent.next();20 return t;21 }22 boolean hasMoreElements() {23 return (
urrent != null);24 }25 }26 }2728 
lass TSta
kClient<
lientOwner> {29 void test() {30 TSta
k<this, this> s = new TSta
k<this, this>;31 TEnumeration<this, this> e = s.elements();32 }33 } Figure 25: TSta
k With Iterator in [6℄je
t en
apsulation (Property E1). The intera
tion betweensubtyping and ownership enables the 
reation of a path to fthrough s that does not go through f's owner. Other partsof the program 
an then a

ess f using this path even ifthey have no relationship with f's owner. The de
oupling off from its owner is further illustrated by the fa
t that theprogram 
an a

ess f even after f's owner be
omes garbage.Be
ause AliasJava does not enfor
e Properties E1, E2, orE3, it is more 
exible than other ownership type systems.For example, in AliasJava, an iterator obje
t that a

essesen
apsulated subobje
ts of a 
olle
tion 
an outlive the 
ol-le
tion obje
t. AliasJava thus trades o� en
apsulation guar-antees su
h as E1, E2, or E3 in favor of added 
exibility,while still allowing programmers to reason about aliasing.Ownership Types With Subtyping and Iterators [6℄:The ownership type systems des
ribed above either do notenfor
e obje
t en
apsulation (they enfor
e weaker restri
-tions instead), or they are not expressive (they do not sup-port subtyping and 
onstru
ts like iterators). Enfor
ingobje
t en
apsulation, while supporting subtyping and 
on-stru
ts like iterators, was an open problem. In a re
entwork [6℄, we provide a satisfa
tory solution to this problem.Consider an implementation of a sta
k and an iterator overthe sta
k. The sta
k and the iterator 
annot be in an owner-ship relation. If the sta
k owns the iterator, one 
annot usethe iterator obje
t outside its sta
k obje
t. If the iteratorowns the sta
k, one 
annot have more than one iterator ob-je
t for a given sta
k obje
t. In [6℄, we solve this problem byimplementing the iterator as an inner 
lass of the sta
k andallowing obje
ts of inner 
lasses to have privileged a

ess tothe representations of the 
orresponding obje
ts of the outer224
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lasses. This approa
h allows programmers to express 
on-stru
ts like iterators and yet allows them to reason lo
allyabout the 
orre
tness of their 
lasses. Our system allows lo-
al reasoning be
ause programmers 
an reason about a 
lassand its inner 
lasses together as a module. Figure 25 showsan iterator implementation for the TSta
k in Figure 7. [6℄enfor
es the following en
apsulation property:E10. Owners as en
apsulating obje
ts: If obje
t z ownsobje
t y, but z does not own obje
t x dire
tly or tran-sitively, then x 
annot a

ess y, unless x is an inner
lass obje
t of y.Ownership Types for Con
urren
y and En
apsula-tion: The type system in this paper 
an be 
ombined withthe type system in [6℄ to stati
ally enfor
e obje
t en
ap-sulation (Property E10) as well as prevent data ra
es anddeadlo
ks. The type system in this paper must be modi�edas follows to enfor
e obje
t en
apsulation. A formal ownerparameter 
an only be instantiated with: 1) another formalowner parameter, 2) thisThread, 3) this, 4) C.this, where Cis an outer 
lass, or 5) a lo
k. The relation (x � y) must beextended to handle thread-lo
al variables and unique point-ers as follows: either 1) x is the same as y, or 2) x is ades
endant of y in the ownership tree, or 3) y is the spe
ialowner self, or thisThread, or unique.7.3 Related Type SystemsEu
lid [31℄ is one of the �rst languages that 
onsidered theproblem of aliasing. [27℄ stressed the need for better treat-ment of aliasing in obje
t-oriented programs. Early work onIslands [26℄ and Balloons [3℄ fo
used on fully en
apsulatedobje
ts where all subobje
ts an obje
t 
an a

ess are not a
-
essible outside the obje
t. Universes [40℄ also enfor
es fullen
apsulation, ex
ept for read-only referen
es. However, fullen
apsulation signi�
antly limits expressiveness, and is oftenmore than is needed. The work on ESC/Java pointed outthat en
apsulation is required only for subobje
ts that the
ontaining obje
t depends on [33℄, but ESC/Java was unableto always enfor
e en
apsulation.Unique Pointers: Linear types [47℄ and unique point-ers [38℄ 
an also be used to 
ontrol obje
t aliasing. Lineartypes have been used in low level languages to support safeexpli
it memory deallo
ation [16℄ and to tra
k resour
e us-age [18℄. Linear types and unique pointers are orthogonal toownership types, but the two 
an be used in 
onjun
tion toprovide more expressive type systems. PRFJ [7℄ is the �rstsystem to 
ombine ownership types with unique pointers.The type system in this paper extends PRFJ. AliasJava [2℄also 
ombines ownership types with unique pointers. A typesystem with ownership types and unique pointers 
an ex-press 
onstru
ts that neither ownership types nor uniquepointers alone 
an express, while enfor
ing obje
t en
apsu-lation. Figure 26 provides an illustration. The example isadopted from a sto
k quote server we had implemented inPRFJ [7℄. Type systems without unique pointers su
h asJOE [12℄ 
an also express the example in Figure 26, but notwithout violating obje
t en
apsulation (Property E1 or E10).Region Types: Our ownership type system is related tothe type systems for doing region-based memory manage-

1 
lass Sto
kQuoteHandler ... {2 So
ket<this> s;3 Sto
kQuoteHandler(So
ket<unique> s) ... {4 this.s = s--; // this.s = s; s = null;5 } ...6 }7 
lass Main {8 void serveQuotes(...) {9 So
ket<unique> s = ...;10 Sto
kQuoteHandler h = new Sto
kQuoteHandler(s--);11 ...12 }13 }Figure 26: Quote Server That Preserves Obje
t En
ap-sulation Using Ownership Types and Unique Pointersment [16, 25℄. In our system, obje
ts are prote
ted by lo
ks.In region types, obje
ts belong to regions. However, our sys-tem 
ontains more information about the stru
ture of theobje
t graph. In our system, obje
ts own (
ontain) otherobje
ts forming ownership trees. Programmers spe
ify lo
ksonly for the roots of ownership trees. The lo
k that prote
tsa root also prote
ts all the obje
ts in the tree. In regiontypes, programmers dire
tly spe
ify the regions for all ob-je
ts. Thus, the information in region types 
orresponds toa 
attening of the ownership trees. Region types 
an be
ombined with ownership types to keep information aboutregions as well as obje
t 
ontainment.E�e
ts: E�e
ts 
lauses [37℄ are useful for spe
ifying as-sumptions that must hold at method boundaries. E�e
tsenable modular 
he
king of programs. PRFJ [7℄ is the �rstsystem to 
ombine e�e
ts with ownership types to stati
allyprevent data ra
es. This paper uses e�e
ts with ownershiptypes to prevent data ra
es and deadlo
ks. [12℄ and [6℄ also
ombine e�e
ts with ownership types for program under-standing and supporting safe software upgrades respe
tively.Data Groups: Data groups [32, 34℄ 
an be used to namegroups of obje
ts in an e�e
ts 
lause to write modular spe
-i�
ations in the presen
e of subtyping. Ownership typesprovide an alternate way of writing modular spe
i�
ations.Ownership types 
an also be used to name groups of obje
tsin an e�e
ts 
lause|the name of an owner 
an be used toname all the obje
ts transitively owned by the owner. How-ever, be
ause data groups are implemented using a theoremprover, data groups 
an be used reason more pre
isely aboute�e
ts. Pivot uniqueness in [34℄ is similar to unique point-ers [38℄. Ownership types 
ombined with unique pointers aremore 
exible than a system with pivot uniqueness be
ausethey allow arbitrarily many pointers to an en
apsulated ob-je
t from obje
ts within the en
apsulation boundary.Shape Analysis: Systems su
h as TVLA [42℄, PALE [39℄,and Roles [30℄ spe
ify the shape of a lo
al obje
t graph inmore detail than ownership types. TVLA 
an verify prop-erties su
h as when the input to the program is a tree, theoutput is also a tree. PALE 
an verify all the data stru
-tures that 
an be expressed as graph types. Roles 
an verifyglobal properties su
h as the parti
ipation of obje
ts in mul-tiple data stru
tures. In 
ontrast to these systems that takeexponential time for veri�
ation, ownership types provide alightweight and pra
ti
al way to 
onstrain aliasing.225
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Parametri
 Types: Our ownership type system is similarto parametri
 type systems for Java [41, 8, 1, 45℄, ex
ept thatour parameters are values and not types. Our type system�ts naturally in a language with parameterized types.8 Other Related WorkThere has been mu
h resear
h on approa
hes to dete
t orprevent data ra
es and deadlo
ks in multithreaded programs.Stati
 Tools: Tools like Warlo
k [44℄ and Sema [29℄ useannotations supplied by programmers to stati
ally dete
tpotential data ra
es and deadlo
ks in a program. The Ex-tended Stati
 Che
ker for Java (ESC/Java) [19℄ is anotherannotation based system that uses a theorem prover to stat-i
ally dete
t many kinds of errors in
luding data ra
es anddeadlo
ks. [21℄ assumes bugs to be deviant behavior to stat-i
ally extra
t and 
he
k 
orre
tness 
onditions that a sys-tem must obey without requiring programmer annotations.While these tools are useful in pra
ti
e, they are not sound,in that they do not 
ertify that a program is ra
e-free ordeadlo
k-free. For example, ESC/Java does not always ver-ify that a partial order of lo
ks de
lared in a program isindeed a partial order.Dynami
 Tools: There are many systems that dete
t datara
es and deadlo
ks dynami
ally. These in
lude systemsdeveloped in the s
ienti�
 parallel programming 
ommu-nity [20℄, tools like Eraser [43℄, and tools for dete
ting datara
es in Java programs [46, 11℄. Eraser dynami
ally moni-tors all lo
k a
quisitions to test whether a linear order existsamong the lo
ks that is respe
ted by every thread. Dynami
tools have the advantage that they 
an 
he
k unannotatedprograms. However, these tools are not 
omprehensive|they may fail to dete
t 
ertain errors due to insuÆ
ient test
overage. Besides, annotated programs are easier to under-stand and maintain be
ause they expli
itly 
ontain the de-sign de
isions made by programmers.Language Me
hanisms: To our knowledge, Con
urrentPas
al is the �rst ra
e-free programming language [9℄. Pro-grams in Con
urrent Pas
al use syn
hronized monitors toprevent data ra
es. But monitors in Con
urrent Pas
al arerestri
ted in that threads 
an share data with monitors onlyby 
opying the data. A thread 
annot pass a pointer to anobje
t to a monitor. More re
ently, resear
hers have pro-posed type systems to prevent data ra
es in obje
t-orientedprograms. Ra
e Free Java [22℄ extends the stati
 annotationsin ESC/Java into a formal ra
e-free type system. Guava [4℄is another diale
t of Java for preventing data ra
es. Ourra
e-free type system published earlier [7℄ lets programmerswrite generi
 
ode to implement a 
lass, and 
reate di�er-ent obje
ts of the same 
lass that have di�erent prote
tionme
hanisms. But the above systems do not prevent dead-lo
ks. The type system in this paper extends our ra
e-freetype system [7℄ to prevent both data ra
es and deadlo
ks.Message Passing Systems: There are several systemsthat stati
ally 
he
k for data ra
es and deadlo
ks in mes-sage passing systems [28, 10℄. These systems, however, usea di�erent programming model. For example, programs inthese systems do not a

ess shared obje
ts in a heap.

9 Con
lusionsThis paper presents a new stati
 type system for multi-threaded programs; well-typed programs in our system areguaranteed to be free of both data ra
es and deadlo
ks. Ourtype system allows programmers to partition the lo
ks into a�xed number of lo
k levels and spe
ify a partial order amongthe lo
k levels. Our system also allows programmers to usere
ursive tree-based data stru
tures to further order lo
kswithin a given lo
k level. The type 
he
ker stati
ally veri�esthat whenever a thread holds more than one lo
k, the threada
quires the lo
ks in the des
ending order. The type 
he
keruses an intra-pro
edural intra-loop 
ow-sensitive analysis to
he
k that mutations to trees used for des
ribing the par-tial order do not introdu
e 
y
les in the partial order, andthat the 
hanging of the partial order does not lead to dead-lo
ks. We do not know of any other sound stati
 systemfor preventing deadlo
ks that allows 
hanges to the partialorder at runtime. This paper also des
ribes how to extendour type system to stati
ally enfor
e obje
t en
apsulation aswell as prevent data ra
es and deadlo
ks. We have imple-mented our type system for Java. Our experien
e indi
atesthat our type system is suÆ
iently expressive and requireslittle programming overhead.A
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AppendixA Type System for Safe Con
urrent JavaThis appendix presents the type system des
ribed in Se
tion 3. The grammar for the type system is shown below.P ::= defn* edefn ::= 
lass 
nhowner formal*i extends 
 flevel* �eld* meth*g
 ::= 
nhowner+i j Obje
thowneriowner ::= formal j self:
n.l j thisThread j efinallevel ::= Lo
kLevel l = new j Lo
kLevel l < 
n.l* > 
n.l*meth ::= t mn(arg* ) a

esses (efinal* ) lo
ks (
n.l* [lo
k ℄opt) feg�eld ::= [�nal℄opt t fd = earg ::= [�nal℄opt t xt ::= 
 j int j booleanformal ::= fe ::= new 
 j x j x = e j e.fd j e.fd = e j e.mn(e* ) j e;e j let (arg=e) in feg j if (e) then feg j syn
hronized (e) in feg j fork (x* ) fegefinal ::= elo
k ::= efinal
n 2 
lass namesfd 2 �eld namesmn 2 method namesx 2 variable namesf 2 owner namesl 2 lo
k level namesWe �rst de�ne a number of predi
ates used in the type system informally. These predi
ates (ex
ept the last one) are basedon similar predi
ates from [23℄ and [22℄. We refer the reader to those papers for their pre
ise formulation.Predi
ate MeaningClassOn
e(P) No 
lass is de
lared twi
e in PWFClasses(P) There are no 
y
les in the 
lass hierar
hyFieldsOn
e(P) No 
lass 
ontains two �elds with the same name, either de
lared or inheritedMethodsOn
e(P) No 
lass 
ontains two methods with the same nameOverridesOK(P) Overriding methods have the same return type and parameter types as the methods being overriddenThe a

esses 
lause of an overriding method must be the same or a subset of the overridden methodsThe lo
ks 
lause of an overriding method must be the same or a subset of the overridden methodsLo
kLevelsOK(P) There are no 
y
les in the lo
k levelsA typing environment is de�ned as E ::= ; j E, [�nal℄opt t x j E, owner f j E, lo
ks
lauseA lo
k set is de�ned as ls ::= thisThread j ls, lo
k j ls, RO(efinal); where RO(e) is the root owner of eA minimum lo
k level is de�ned as lmin ::= 1 j 
n:l j LUB(
n1:l1 ... 
nk:lk); where LUB(
n1:l1 ... 
nk:lk) > 
ni:li 8i=1::kNote that RO(e) and LUB(...) are not 
omputed|they are just expressions used as su
h for type 
he
king.We de�ne the type system using the following judgments. We present the typing rules for these judgments after that.Judgment Meaning` P : t program P yields type tP ` defn defn is a well-formed 
lass de�nitionP ; E ` wf E is a well-formed typing environmentP ; E ` t t is a well-formed typeP ; E ` t1 <: t2 t1 is a subtype of t2P ; E `owner o o is an ownerP `level 
n:l 
n:l is a well-formed lo
k levelP ` 
n1:l1 < 
n2:l2 
n1:l1 is less than 
n2:l2 in the partial order formed by lo
k levelsP ` 
n:l < lmin 
n:l is less than lmin in the partial order formed by lo
k levelsP ; E ` level(e) = 
n:l e is a �nal expression that owns itself and the lo
k level of e is 
n:lP ; E ` level(e) < lmin e is a �nal expression that owns itself and the lo
k level of e is less than lminP ; E `�nal e : t e is a �nal expression with type tP ; E ` �eld init �eld init is a well-formed �eld initializerP ` �eld 2 
nhf1::ni 
lass 
n with formal parameters f1::n de
lares/inherits �eldP ` meth 2 
nhf1::ni 
lass 
n with formal parameters f1::n de
lares/inherits methP ; E ` meth meth is a well-formed methodP ; E ` RootOwner(e) = r r is the root owner of the �nal expression eP ; E ` e : t expression e has type tP ; E; ls; lmin ` e : t expression e has type t and evaluating e will not 
reate data ra
es or deadlo
ks228
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` P : t[PROG℄ ClassOn
e(P) WFClasses(P) FieldsOn
e(P)MethodsOn
e(P) OverridesOK(P) Lo
kLevelsOK(P)P = defn1::n e P ` defni P ; ;; thisThread; 1 ` e : t` P : t P ` defn[CLASS℄ if (f1 6= self:
n0:l0 j thisThread) then g1 = owner f18i=2::n gi = owner fi E = g1::n, �nal 
nhf1::ni thisP ; E ` 
 P ; E ` �eldi P ; E ` methiP ` 
lass 
nhf1::ni extends 
 f�eld1::j meth1::kgP ; E ` wf[ENV ;℄P ; ; ` wf [ENV OWNER℄P ; E ` wf f =2 Dom(E)P ; E, owner f ` wf [ENV X℄P ; E ` wf , t x =2 Dom(E)P ; E, [�nal℄opt t x ` wf P ; E ` t[TYPE INT℄P ; E ` int [TYPE BOOLEAN℄P ; E ` boolean [TYPE OBJECT℄P ; E `owner oP ; E ` Obje
thoi[TYPE SHARED CLASS℄P ` 
lass 
nhself:
n0:l0 f2::ni ...o1 = self:
n0:l0 P ; E `owner o1::nP ; E ` 
nho1::ni [TYPE THREAD-LOCAL CLASS℄P ` 
lass 
nhthisThread f2::ni ...o1 = thisThread P ; E `owner o1::nP ; E ` 
nho1::ni [TYPE C℄ P ` 
lass 
nhf1::ni ...f1 6= self:
n0:l0 j thisThread P ; E `owner o1::nP ; E ` 
nho1::niP ; E ` t1 <: t2[SUBTYPE REFL℄P ; E ` tP ; E ` t <: t [SUBTYPE TRANS℄P ; E ` t1 <: t2 P ; E ` t2 <: t3P ; E ` t1 <: t3 [SUBTYPE CLASS℄ P ; E ` 
n1ho1::niP ` 
lass 
n1hf1::ni extends 
n2hf1 o�i ...P ; E ` 
n1ho1::ni <: 
n2hf1 o�i [o1=f1℄::[on=fn℄P ; E `owner o[OWNER THISTHREAD℄P ; E `owner thisThread [OWNER OTHERTHREAD℄P ; E `owner otherThread [OWNER SELF℄P `level 
n:lP ; E `owner self:
n:l [OWNER EXP℄P ; E `final e : tP ; E `owner e [OWNER FORMAL℄P ; E ` wfE = E1, owner f , E2P ; E `owner fP `level 
n:l[LEVEL℄P ` 
lass 
n... f... Lo
klevel l ...gP `level 
n:l P ` 
n1:l1 < 
n2:l2[LEVEL <℄P ` 
lass 
n1... f... Lo
kLevel l1 < ... 
n2:l2 ...gP ` 
n1:l1 < 
n2:l2 [LEVEL >℄P ` 
lass 
n2... f... Lo
kLevel l2 > ... 
n1:l1 ...gP ` 
n1:l1 < 
n2:l2P ` 
n:l < lmin[LEVEL < INFTY℄lmin = 1P `level 
n:lP ` 
n:l < lmin [LEVEL < LUB℄lmin = LUB(... 
n:l ...)P `level 
n:lP ` 
n:l < lmin [LEVEL < CN.L℄lmin = 
n0:l0P ` 
n:l < 
n0:l0P ` 
n:l < lmin [LEVEL TRANS℄P ` 
n0:l0 < lminP ` 
n:l < 
n0:l0P ` 
n:l < lmin P ; E ` level(e) = 
n:l[LEVEL(EXP)℄P ; E `final e : 
n0hself:
n:l ...iP ; E ` level(e) = 
n:lP ; E ` level(e) < lmin[LEVEL < LEVEL MIN℄P ; E ` level(e) = 
n:lP ` 
n:l < lminP ; E ` level(e) < lmin P ; E `final e[FINAL VAR℄P ; E ` wfE = E1, �nal t x, E2P ; E `final x : t [FINAL REF℄P ` (�nal t fd) 2 
nhf1::niP ; E `final e : 
nho1::niP ; E `final e:fd : t[o1=f1℄::[on=fn℄ P ; E ` �eld init[FIELD INIT℄P ; E; thisThread; 1 ` e : tP ; E ` [�nal℄opt t fd = eP ` �eld 2 
[FIELD DECLARED℄P ` 
lass 
nhf1::ni... f... �eld ...gP ` �eld 2 
nhf1::ni [FIELD INHERITED℄P ` �eld 2 
nhf1::niP ` 
lass 
n0hg1::mi extends 
nho1::ni...P ` �eld[o1=f1℄::[on=fn℄ 2 
n0hg1::mi P ` meth 2 
[METHOD DECLARED℄P ` 
lass 
nhf1::ni... f... meth ...gP ` meth 2 
nhf1::ni229



www.manaraa.com

[METHOD INHERITED℄P ` meth 2 
nhf1::niP ` 
lass 
n0hg1::mi extends 
nho1::ni...P ` meth[o1=f1℄::[on=fn℄ 2 
n0hg1::mi P ; E ` method[METHOD℄ E0 = E, arg1::n, lo
ks(
nj :lj j21::k [lo
k ℄opt)P ; E0 `�nal ei : ti P ; E0 ` RootOwner(ei) = ri ls = thisThread, r1::rlmin = LUB(
nj :lj j21::k) P ; E0; ls; lmin ` e : tP ; E ` t mn(arg1::n) a

esses(e1::r) lo
ks(
nj :lj j21::k [lo
k ℄opt) fegP ; E ` RootOwner(e) = r[ROOTOWNER THISTHREAD℄P ; E ` e : 
nhthisThread o�iP ; E ` RootOwner(e) = thisThread [ROOTOWNER OTHERTHREAD℄P ; E ` e : 
nhotherThread o�iP ; E ` RootOwner(e) = otherThread [ROOTOWNER SELF℄P ; E ` e : 
nhself:
n0:l0 o�iP ; E ` RootOwner(e) = e[ROOTOWNER FINAL TRANSITIVE℄P ; E ` e : 
nho1::niP ; E `final o1 : 
1 P ; E ` RootOwner(o1) = rP ; E ` RootOwner(e) = r [ROOTOWNER FORMAL℄P ; E ` e : 
nho1::niP ; E `owner o1P ; E ` RootOwner(e) = RO(e) P ; E ` e : t[EXP TYPE℄9ls P ; E; ls; 1 ` e : tP ; E ` e : tP ; E; ls ` e : t[EXP SUB℄P ; E; ls; lmin ` e : t0P ; E; ls; lmin ` t0 <: tP ; E; ls; lmin ` e : t [EXP NEW℄ P ; E ` 
P ; E; ls; lmin ` new 
 : 
 [EXP VAR℄P ; E ` wfE = E1, [�nal℄opt t x, E2P ; E; ls; lmin ` x : t [EXP VAR ASSIGN℄P ; E ` wfE = E1, t x, E2 P ; E; ls; lmin ` e : tP ; E; ls; lmin ` x = e : t[EXP SEQ℄P ; E; ls; lmin ` e1 : t1P ; E; ls; lmin ` e2 : t2P ; E; ls; lmin ` e1; e2 : t2 [EXP LET℄ arg = [�nal℄opt t x P ; E; ls; lmin ` e : tP ; E, arg; ls; lmin ` e0 : t0P ; E; ls; lmin ` let (arg = e) in fe0g : t0 [EXP IF℄P ; E; ls; lmin ` e1 : booleanP ; E; ls; lmin ` e2 : t2P ; E; ls; lmin ` if (e1) then fe2g : t2[EXP REF℄P ; E; ls; lmin ` e : 
nho1::ni P ; E ` RootOwner(e) = r(P ` (t fd) 2 
nhf1::ni) ^ (r 2 ls) _ (P ` (�nal t fd) 2 
nhf1::ni)P ; E; ls; lmin ` e:fd : t[e/this℄[o1=f1℄..[on=fn℄ [EXP ASSIGN℄P ; E; ls; lmin ` e : 
nho1::ni P ; E ` RootOwner(e) = r(P ` (t fd) 2 
nhf1::ni) ^ (r 2 ls)P ; E; ls; lmin ` e0 : t[e/this℄[o1=f1℄..[on=fn℄P ; E; ls; lmin ` e:fd = e0 : t[e/this℄[o1=f1℄..[on=fn℄[EXP SYNC℄ P ; E ` level(e1) = 
n:l < lmin(E = E1, lo
ks(... l), E2) =) (P ; E ` 
n:l < level(l)) _ (l = e1)P ; E; ls, e1; 
n:l ` e2 : t2P ; E; ls; lmin ` syn
hronized e1 in e2 : t2 [EXP SYNC REDUNDANT℄e1 2 lsP ; E; ls; lmin ` e2 : t2P ; E; ls; lmin ` syn
hronized e1 in e2 : t2[EXP INVOKE℄ Renamed(�) def= �[e/this℄[o1=f1℄..[on=fn℄[e1=y1℄..[ek=yk℄P ; E; ls; lmin ` e : 
nho1::niP ` (t mn(tj yj j21::k) a

esses(e0�) lo
ks(
n:l� [lo
k ℄opt) ...) 2 
nhf1::niP ; E; ls; lmin ` ej : Renamed(tj)P ; E ` RootOwner(Renamed(e0i)) = r0i r0i 2 lsP ` 
ni:li < lminlo
kR = Renamed(lo
k)P ; E ` (level(lo
kR) < lmin) _ (level(lo
kR) = lmin) ^ (lo
kR 2 ls)P ; E; ls; lmin ` e.mn(e1::k) : Renamed(t)
[EXP FORK℄ P ; E; ls; lmin ` xi : tigi = �nal ti[otherThread/thisThread℄ xiP ; g1::n; thisThread; 1 ` e : tP ; E; ls; lmin ` fork (x1::n) feg : int
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